Решение типовых задач по сопромату. Чистый изгиб


Общие понятия.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1) . Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

; (6.1)

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а) , то при чистом изгибе она деформируется следующим образом (рис. 6.1, б) :

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. .

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называется нейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. .

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной. До деформации сечения, ограничивающие элемент, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна, отстоящего на расстоянии от нейтрального слоя.

Длина этого волокна после деформации (длина дуги) равна. Учитывая, что до деформации все волокна имели одинаковую длину, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента в поперечном сечении (6.1)

Вспомним, что интеграл представляет собой момент инерции сечения относительно оси

Или

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя) с действующим в сечении моментом. Произведение носит название жесткости сечения при изгибе, Н· м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы и изгибающего момента

Поскольку,

то

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и - главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сечения относительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

Сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента действует еще продольная сила и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Определение поперечных сил и изгибающих моментов.

Как уже было сказано, при плоском поперечном изгибе в поперечном сечении балки возникают два внутренних силовых фактора и.

Перед определением и определяют реакции опор балки (рис. 6.3, а), составляя уравнения равновесия статики.

Для определения и применим метод сечений. В интересующем нас месте сделаем мысленный разрез балки, например, на расстоянии от левой опоры. Отбросим одну из частей балки, например правую, и рассмотрим равновесие левой части (рис. 6.3, б). Взаимодействие частей балки заменим внутренними усилиями и.

Установим следующие правила знаков для и:

  • Поперечная сила в сечении положительна, если ее векторы стремятся вращать рассматриваемое сечение по часовой стрелке ;
  • Изгибающий момент в сечении положителен, если он вызывает сжатие верхних волокон.

Рис. .

Для определения данных усилий используем два уравнения равновесия:

1. ; ; .

2. ;

Таким образом,

а) поперечная сила в поперечном сечении балки численно равна алгебраической сумме проекций на поперечную ось сечения всех внешних сил, действующих по одну сторону от сечения;

б) изгибающий момент в поперечном сечении балки численно равен алгебраической сумме моментов (вычисленных относительно центра тяжести сечения) внешних сил, действующих по одну сторону от данного сечения.

При практическом вычислении руководствуются обычно следующим:

  1. Если внешняя нагрузка стремится повернуть балку относительно рассматриваемого сечения по часовой стрелке, (рис. 6.4, б) то в выражении для она дает положительное слагаемое.
  2. Если внешняя нагрузка создает относительно рассматриваемого сечения момент, вызывающий сжатие верхних волокон балки (рис. 6.4, а), то в выражении для в этом сечении она дает положительное слагаемое.

Рис. .

Построение эпюр и в балках.

Рассмотрим двухопорную балку (рис. 6.5, а) . На балку действует в точке сосредоточенный момент, в точке - сосредоточенная сила и на участке - равномерно распределенная нагрузка интенсивностью.

Определим опорные реакции и (рис. 6.5, б) . Равнодействующая распределенной нагрузки равна, а линия действия ее проходит через центр участка. Составим уравнения моментов относительно точек и.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки А (рис. 6.5, в) .

(рис. 6.5, г). Расстояние может изменяться в пределах ().

Значение поперечной силы не зависит от координаты сечения, следовательно, во всех сечениях участка поперечные силы одинаковы и эпюра имеет вид прямоугольника. Изгибающий момент

Изгибающий момент изменяется по линейному закону. Определим ординаты эпюры для границ участка.

Определим поперечную силу и изгибающий момент в произвольном сечений, расположенном на участке на расстоянии от точки (рис. 6.5, д). Расстояние может изменяться в пределах ().

Поперечная сила изменяется по линейному закону. Определим для границ участка.

Изгибающий момент

Эпюра изгибающих моментов на этом участке будет параболической.

Чтобы определить экстремальное значение изгибающего момента, приравниваем к нулю производную от изгибающего момента по абсциссе сечения:

Отсюда

Для сечения с координатой значение изгибающего момента будет составлять

В результате получаем эпюры поперечных сил (рис. 6.5, е) и изгибающих моментов (рис. 6.5, ж).

Дифференциальные зависимости при изгибе.

(6.11)

(6.12)

(6.13)

Эти зависимости позволяют установить некоторые особенности эпюр изгибающих моментов и поперечных сил:

Н а участках, где нет распределенной нагрузки, эпюры ограничены прямыми, параллельными нулевой линии эпюры, а эпюры в общем случае – наклонными прямыми .

Н а участках, где к балке приложена равномерно распределенная нагрузка, эпюра ограничена наклонными прямыми, а эпюра - квадратичными параболами с выпуклостью, обращенной в сторону, противоположную направлению действия нагрузки .

В сечениях, где, касательная к эпюре параллельна нулевой линии эпюры .

Н а участках, где, момент возрастает; на участках, где, момент убывает .

В сечениях, где к балке приложены сосредоточенные силы, на эпюре будут скачки на величину приложенных сил, а на эпюре будут переломы .

В сечениях, где к балке приложены сосредоточенные моменты, на эпюре будут скачки на величину этих моментов.

Ординаты эпюры пропорциональны тангенсу угла наклона касательной к эпюре.

1. Прямой чистый изгиб Поперечный изгиб - деформация стержня силами, перпендикулярными оси (поперечными) и парами, плоскости действия которых перпендикулярны нормальным сечениям. Стержень работающий на изгиб называют балкой. При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор - изгибающий момент Mz. Так как Qy=d. Mz/dx=0, то Mz=const и чистый прямой изгиб может быть реализован при нагружении стержня парами сил, приложенными в торцевых сечениях стержня. σ Поскольку изгибающий момент Mz по определению равен сумме моментов внутренних сил относительно оси Оz с нормальными напряжениями его связывает выкающее из этого определения уравнение статики:

Анализ напряженного состояния при чистом изгибе Проанализируем деформации модели стержня на боковой поверхности которого нанесена сетка продольных и поперечных рисок: Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, а следовательно Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон, то есть То есть изо всех компонентов тензора напряжений при чистом изгибе не равно нулю только напряжение σx=σ и чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями σ. При этом часть волокон находится в зоне растяжения (на рис. это-нижние волокна), а другая часть-в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (n-n), не меняющим своей длины, напряжения в котором равны нулю.

Правило знаков изгибающих моментов Правила знаков моментов в задачах теоретической механики и сопротивления материалов не совпадают. Причина этого в различии рассматриваемых процессов. В теоретической механике рассматриваемым процессом является движение или равновесие твердых тел, поэтому два момента на рисунке стремящиеся повернуть Mz стержень в разные стороны (правый момент по часовой стрелке, а левый – против) имеют в задачах теоретической механики разный знак. В задачах сопромата рассматриваются возникающие в теле напряжения и деформации. С этой точки зрения оба момента вызывают в верхних волокнах напряжения сжатия, а в нижних напряжения растяжения, поэтому моменты имеют одинаковый знак. Правила знаков изгибающих моментов относительно сечения С-С представлены на схеме:

Расчет значений напряжений при чистом изгибе Выведем формулы для расчета радиуса кривизны нейтрального слоя и нормальных напряжений в стержне. Рассмотрим призматический стержень в условиях прямого чистого изгиба с поперечным сечением, симметричным относительно вертикальной оси Oy. Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно. Отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mz=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня. При изгибе с постоянной кривизной нейтральный слой стержня становится дугой окружности, ограниченной углом φ. Рассмотрим вырезанный из стержня бесконечно малый элемент длиной dx. При изгибе он превратится в бесконечно малый элемент дуги, ограниченный бесконечно малым углом dφ. φ ρ dφ С учетом зависимостей между радиусом окружности, углом и длиной дуги:

Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости dφ считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным. Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у: Из подобия треугольников COO 1 и O 1 BB 1 следует, что то есть: Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений. Тогда нормальное напряжение, растягивающее волокно АВ, на основании закона Гука будет равно:

Полученная формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя 1/ρ и положение нейтральной оси Ох, от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы Подставляя в это уравнение выражение для σ: и учитывая, что, получаем, что: Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси (оси проходящей через центр тяжести сечения). Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения. Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом. Подставляя в это уравнение выражение для напряжений, получим:

Интеграл в полученном уравнении ранее изучен: Jz- момент инерции относительно оси Оz. В соответствии с выбранным положение осей координат он же главный центральный момент инерции сечения. Получаем формулу для кривизны нейтрального слоя: Кривизна нейтрального слоя 1/ρ является мерой деформации стержня при прямом чистом изгибе. Кривизна тем меньше, чем больше величина EJz, называемая жесткостью поперечного сечения при изгибе. Подставляя выражение в формулу для σ, получаем: Таким образом, нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси. геометрическая характеристика, имеющая размерность м 3 называется момент сопротивления при изгибе.

Определение моментов сопротивления Wz поперечных сечений - У простейших фигур в справочнике (лекция 4) или рассчитать самостоятельно - У стандартных профилей в сортаменте ГОСТ

Расчет на прочность при чистом изгибе Проектировочный расчет Условие прочности при расчете чистого изгиба будет иметь вид: Из данного условия определяют Wz, а далее либо подбирают нужный профиль из сортамента стандартного проката, либо по геометрическим зависимостям рассчитывают размеры сечения. При расчете балок из хрупких материалов следует различать наибольшие растягивающие и наибольшие сжимающие напряжения, которые сравниваются соответственно с допускаемыми напряжениями на растяжение и сжатие. Условий прочности в этом случае будет два, отдельно по растяжению и по сжатию: Здесь - соответственно допускаемые напряжения на растяжение и на сжатие.

2. Прямой поперечный изгиб τxy τxz σ При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мz и поперечная сила Qy, которые связаны с нормальными и касательными напряжениями Выведенная в случае чистого изгиба стержня формула для расчета нормальных напряжений в случае прямого поперечного изгиба, строго говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями, происходит депланация (искривление) поперечных сечении, то есть нарушается гипотеза плоских сечений. Однако для балок с высотой сечения h

При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы: а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия σy могут быть достаточно велики и во много раз превышать продольные напряжения, убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы; б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис, напряжения от давления на верхние волокна балки. Сравнивая их с продольными напряжениями σz, имеющими порядок: приходим к выводу, что напряжения σy

Расчет касательных напряжений при прямом поперечном изгибе Примем, что касательные напряжения равномерно распределены по ширине поперечного сечения. Непосредственное определение напряжений τyx затруднительно, поэтому находим равные им касательные напряжения τxy, возникающие на продольной площадке с координатой у элемента длиной dx, вырезанного из балки z x Mz

От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями τ. Нормальные напряжения σ и σ+dσ , действующие на торцевых площадках элемента, также заменим их равнодействующими y Mz τ Mz+d. Mz by ω y z Qy Qy +d. Qy dx Nω+d Nω d. T статический момент отсеченной части площади поперечного сечения ω относительно оси Оz. Рассмотрим условие равновесия отсеченного элемента составив для него уравнение статики Nω dx b

откуда после несложных преобразований, учитывая, что получим Формула Журавского Kасательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси Mz z Учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют, а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям

3. Составные балки при изгибе Касательные напряжения в продольных сечениях являются выражением существующей связи между слоями стержня при поперечном изгибе. Если эта связь в некоторых слоях нарушена, характер изгиба стержня меняется. В стержне, составленном из листов, каждый лист при отсутствии сил трения изгибается самостоятельно. Изгибающий момент равномерно распределяется между составными листами. Максимальное значение изгибающего момента будет в середине балки и будет равно. Mz=P·l. Наибольшее нормальное напряжение в поперечном сечении листа равно:

Если листы плотно стянуть достаточно жесткими болтами, стержень будет изгибаться как целый. В этом случае наибольшее нормальное напряжение оказывается в n раз меньше, т. е. В поперечных сечениях болтов при изгибе стержня возникают поперечные силы. Наибольшая поперечная сила будет в сечении, совпадающем с нейтральной плоскостью изогнутого стержня.

Эту силу можно определить из равенства сумм поперечных сил в сечениях болтов и продольной равнодействующей касательных напряжений в случае целого стержня: где m - число болтов. Сопоставим изменение кривизны стержня в заделке в случае связанного и несвязанного пакетов. Для связанного пакета: Для несвязанного пакета: Пропорционально изменениям кривизны меняются и прогибы. Таким образом, по сравнению с целым стержнем набор свободно сложенных листов оказывается в n 2 раз более гибким и только в n раз менее прочным. Это различие в коэффициентах снижения жесткости и прочности при переходе к листовому пакету используют на практике при создании гибких рессорных подвесок. Силы трения между листами повышают жесткость пакета, так как частично восстанавливают касательные силы между слоями стержня, устраненные при переходе к листовому пакету. Рессоры нуждаются поэтому в смазке листов и их следует оберегать от загрязнения.

4. Рациональные формы поперечных сечений при изгибе Наиболее рациональным является сечение, обладающее минимальной площадью при заданной нагрузке на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Для этого необходимо, чтобы наибольшие напряжения растяжения и наибольшие напряжения сжатия одновременно достигали допускаемых напряжений. Приходим к рациональному для пластичного материала сечению в форме симметричного двутавра, у которого возможно большая часть материала сосредоточена на полках, соединенных стенкой, толщина которой назначается из условий прочности стенки по касательным напряжениям. . К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение

Для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие которое вытекает из требования Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов. а-двутавр, б- швеллер, в - неравнобокий уголок, холодногнутые замкнутые г-равнобокий уголок. сварные профили

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

Чистым изгибом называется такой вид изгиба, при котором имеет место действие только изгибающего момента (рис. 3.5, а). Мысленно проведем плоскость сечения I-I перпендикулярно продольной оси балки на расстоянии * от свободного конца балки, к которому приложен внешний момент m z . Осуществим действия, аналогичные тем, которые были выполнены нами при определении напряжений и деформаций при кручении, а именно:

  • 1) составим уравнения равновесия мысленно отсеченной части детали;
  • 2) определим деформацию материала детали исходя из условий совместности деформаций элементарных объемов данного сечения;
  • 3) решим уравнения равновесия и совместности деформаций.

Из условия равновесия отсеченного участка балки (рис. 3.5, б)

получим, что момент внутренних сил M z равен моменту внешних сил т: М = т.

Рис. 3.5.

Момент внутренних сил создается нормальными напряжениями o v , направленными вдоль оси х. При чистом изгибе нет внешних сил, поэтому сумма проекций внутренних сил на любую координатную ось равна нулю. На этом основании запишем условия равновесия в виде равенств

где А - площадь поперечного сечения балки (стержня).

При чистом изгибе внешние силы F x , F, F v а также моменты внешних сил т х, т у равны нулю. Поэтому остальные уравнения равновесия тождественно равны нулю.

Из условия равновесия при о^О следует, что

нормальные напряжение с х в поперечном сечении принимают как положительные, так и отрицательные значения. (Опыт показывает, что при изгибе материал нижней стороны бруса на рис. 3.5, а растянут, а верхней - сжат.) Следовательно, в поперечном сечении при изгибе есть такие элементарные объемы (переходного слоя от сжатия к растяжению), в которых удлинение или сжатие отсутствует. Это - нейтральный слой. Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной линией.

Условия совместности деформаций элементарных объемов при изгибе формируется на основе гипотезы плоских сечений: плоские до изгиба поперечные сечения балки (см. рис. 3.5, б) останутся плоскими и после изгиба (рис. 3.6).

В результате действия внешнего момента брус изгибается, а плоскости сечений I-I и II-II поворачиваются друг относительно друга на угол dy (рис. 3.6, б). При чистом изгибе деформация всех сечений вдоль оси балки одинакова, поэтому радиус р к кривизны нейтрального слоя балки вдоль оси х один и тот же. Так как dx = р K dip, то кривизна нейтрального слоя равна 1 / р к = dip / dx и постоянна по длине балки.

Нейтральный слой не деформируется, его длина до и после деформации равна dx. Ниже этого слоя материал растянут, выше - сжат.


Рис. 3.6.

Значение удлинения растянутого слоя, находящегося на расстоянии у от нейтрального, равно ydq. Относительное удлинение этого слоя:

Таким образом, в принятой модели получено линейное распределение деформаций в зависимости от расстояния данного элементарного объема до нейтрального слоя, т.е. по высоте сечения балки. Полагая, что нет взаимного надавливания параллельных слоев материала друг на друга (о у = 0, а, = 0), запишем закон Гука для линейного растяжения:

Согласно (3.13) нормальные напряжения в поперечном сечении балки распределены по линейному закону. Напряжение элементарного объема материала, наиболее удаленного от нейтрального слоя (рис. 3.6, в ), максимально и равно

? Задача 3.6

Определить предел упругости стального клинка толщиной / = 4 мм и длиной / = 80 см, если его изгиб в полуокружность не вызывает остаточной деформации.

Решение

Напряжение при изгибе o v = Еу / р к. Примем y max = t / 2и р к = / / к.

Предел упругости должен соответствовать условию с уп > c v = 1 / 2 кЕ t /1.

Ответ: о = ] / 2 к 2 10 11 4 10 _3 / 0,8 = 1570 МПа; предел текучести этой стали а т > 1800 МПа, что превышает а т самых прочных пружинных сталей. ?

? Задача 3 .7

Определить минимальный радиус барабана для намотки ленты толщиной / = 0,1 мм нагревательного элемента из никелевого сплава, при котором материал ленты пластически не деформируется. Модуль Е= 1,6 10 5 МПа, предел упругости о уп = 200 МПа.

Ответ: минимальный радиус р = V 2 ?ir/a yM = У? 1,6-10 11 0,1 10 -3 / (200 10 6) = = 0,04 м. ?

1. При совместном решении первого уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Значение Е / р к ф 0 и одинаково для всех элементов dA площади интегрирования. Следовательно, данное равенство удовлетворяется только при условии

Этот интеграл называют статическим моментом площади поперечного сечения относительно оси z? Каков физический смысл этого интеграла?

Возьмем пластинку постоянной толщины /, но произвольного профиля (рис. 3.7). Подвесим эту пластинку в точке С так, чтобы она находилась в горизонтальном положении. Обозначим символом у м удельный вес материала пластинки, тогда вес элементарного объема площадью dA равен dq = уJdA. Так как пластинка находится в состоянии равновесия, то из равенства нулю проекций сил на ось у получим

где G = у M tA - вес пластинки.


Рис. 3.7.

Сумма моментов сил всех сил относительно оси z , проходящей в любом сечении пластинки, также равна нулю:

Учитывая, что Y c = G, запишем

Таким образом, если интеграл вида J xdA по площади А равен

нулю, то х с = 0. Это означает, что точка С совпадает с центром тяжести пластинки. Следовательно, из равенства S z = J ydA = 0 при из-

гибе следует, что центр тяжести поперечного сечения балки находится на нейтральной линии.

Следовательно, значение у с поперечного сечения балки равно нулю.

  • 1. Нейтральная линия при изгибе проходит через центр тяжести поперечного сечения балки.
  • 2. Центр тяжести поперечного сечения является центром приведения моментов внешних и внутренних сил.

Задача 3.8

Задача 3.9

2. При совместном решении второго уравнения равновесия (3.12) и уравнения совместности деформаций (3.13) получим

Интеграл J z = J y 2 dA называется моментом инерции поперечного

сечения балки (стержня) относительно оси z, проходящей через центр тяжести поперечного сечения.

Таким образом, M z = Е J z / р к. Учитывая, что с х = Ее х = Еу / р к и Е / р к = а х / у, получим зависимость нормальных напряжений о х при изгибе:

1. Напряжение изгиба в данной точке сечения не зависит от модуля нормальной упругости Е, но зависит от геометрического параметра поперечного сечения J z и расстояния у от данной точки до центра тяжести поперечного сечения.

2. Максимальное напряжение при изгибе имеет место в элементарных объемах, наиболее удаленных от нейтральной линии (см. рис. 3.6, в):

где W z - момент сопротивления поперечного сечения относительно оси Z-

Условие прочности при чистом изгибе аналогично условию прочности при линейном растяжении:

где [а м | - допускаемое напряжение при изгибе.

Очевидно, что внутренние объемы материала, особенно вблизи нейтральной оси, практически не нагружены (см. рис. 3.6, в). Это противоречит требованию минимизировать материалоемкость конструкции. Ниже будут показаны некоторые способы преодоления данного противоречия.

Для наглядного представления характера деформации брусьев (стержней) при изгибе проводится следующий опыт. На боковые грани резинового бруса прямоугольного сечения наносится сетка линий, параллельных и перпендикулярных оси бруса (рис. 30.7, а). Затем к брусу по его концам прикладываются моменты (рис. 30.7, б), действующие в плоскости симметрии бруса, пересекающей каждое его поперечное сечение по одной из главных центральных осей инерции. Плоскость, проходящая через ось бруса и одну из главных центральных осей инерции каждого его поперечного сечения, будем называть главной плоскостью.

Под действием моментов брус испытывает прямой чистый изгиб. В результате деформации, как показывает опыт, линии сетки, параллельные оси бруса, искривляются, сохраняя между собой прежние расстояния. При указанном на рис. 30.7, б направлении моментов эти линии в верхний части бруса удлиняются, а в нижней - укорачиваются.

Каждую линию сетки, перпендикулярную к оси бруса, можно рассматривать как след плоскости некоторого поперечного сечения бруса. Так как эти линии остаются прямыми, то можно предполагать, что поперечные сечения бруса, плоские до деформации, остаются плоскими и в процессе деформации.

Это предположение, основанное на опыте, как известно, носит название гипотезы плоских сечений, или гипотезы Бернулли (см. § 6.1).

Гипотеза плоских сечений применяется не только при чистом, но и при поперечном изгибе. Для поперечного изгиба она является приближенной, а для чистого изгиба строгой, что подтверждается теоретическими исследованиями, проведенными методами теории упругости.

Рассмотрим теперь прямой брус с поперечным сечением, симметричным относительно вертикальной оси, заделанный правым концом и нагруженный на левом конце внешним моментом действующим в одной из главных плоскостей бруса (рис. 31.7). В каждом поперечном сечении этого бруса возникают только изгибающие моменты действующие в той же плоскости, что и момент

Таким образом, брус на всем своем протяжении находится в состоянии прямого чистого изгиба. В состоянии чистого изгиба могут находиться отдельные участки балки и в случае действия на нее поперечных нагрузок; например, чистый изгиб испытывает участок 11 балки, изображенной на рис. 32.7; в сечениях этого участка поперечная сила

Выделим из рассматриваемого бруса (см. рис. 31.7) двумя поперечными сечениями элемент длиной . В результате деформации, как это следует из гипотезы Бернулли, сечения останутся плоскими, но наклонятся по отношению друг к другу на некоторый угол Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол оно займет положение (рис. 33.7).

Прямые пересекутся в некоторой точке А, которая является центром кривизны (или, точнее, следом оси кривизны) продольных волокон элемента Верхние волокна рассматриваемого элемента при показанном на рис. 31.7 направлении момента удлиняются, а нижние укорачиваются. Волокна же некоторого промежуточного слоя перпендикулярного к плоскости действия момента сохраняют свою длину. Этот слой называется нейтральным слоем.

Обозначим радиус кривизны нейтрального слоя, т. е. расстояние от этого слоя до центра кривизны А (см. рис. 33.7). Рассмотрим некоторый слой расположенный на расстоянии у от нейтрального слоя. Абсолютное удлинение волокон этого слоя равно а относительное

Рассматривая подобные треугольники устанавливаем, что Следовательно,

В теории изгиба предполагается, что продольные волокна бруса не давят друг на друга. Экспериментальные и теоретические исследования показывают, что это предположение не влияет существенно на результаты расчета.

При чистом изгибе в поперечных сечениях бруса не возникают касательные напряжения. Таким образом, все волокна при чистом изгибе находятся в условиях одноосного растяжения или сжатия.

По закону Гука для случая одноосного растяжения или сжатия нормальное напряжение о и соответствующая относительная деформация связаны зависимостью

или на основании формулы (11.7)

Из формулы (12.7) следует, что нормальные напряжения в продольных волокнах бруса прямо пропорциональны их расстояниям у от нейтрального слоя. Следовательно, в поперечном сечении бруса в каждой его точке нормальные напряжения пропорциональны расстоянию у от этой точки до нейтральной оси, представляющей собой линию пересечения нейтрального слоя с поперечным сечением (рис.

34.7, а). Из симметрии бруса и нагрузки следует, что нейтральная ось горизонтальна.

В точках нейтральной оси нормальные напряжения равны нулю; по одну сторону от нейтральной оси они растягивающие, а по другую - сжимающие.

Эпюра напряжений о представляет собой график, ограниченный прямой линией, с наибольшими по абсолютной величине значениями напряжений для точек, наиболее удаленных от нейтральной оси (рис. 34.7,б).

Рассмотрим теперь условия равновесия выделенного элемента бруса. Действие левой части бруса на сечение элемента (см. рис. 31.7) представим в виде изгибающего момента остальные внутренние усилия в этом сечении при чистом изгибе равны нулю. Действие правой части бруса на сечение элемента представим в виде элементарных сил о приложенных к каждой элементарной площадке поперечного сечения (рис. 35.7) и параллельных оси бруса.

Составим шесть условий равновесия элемента

Здесь - суммы проекций всех сил, действующих на элемент соответственно на оси - суммы моментов всех сил относительно осей (рис. 35.7).

Ось совпадает с нейтральной осью сечения а ось у перпендикулярна к ней; обе эти оси расположены в плоскости поперечного сечения

Элементарная сила не дает проекций на оси у и и не вызывает момента относительно оси Поэтому уравнения равновесия удовлетворяются при любых значениях о.

Уравнение равновесия имеет вид

Подставим в уравнение (13.7) значение а по формуле (12.7):

Так как (рассматривается изогнутый элемент бруса, для которого ), то

Интеграл представляет собой статический момент поперечного сечения бруса относительно нейтральной оси . Равенство его нулю означает, что нейтральная ось (т. е. ось ) проходит через центр тяжести поперечного сечения. Таким образом, центр тяжести всех поперечных сечений бруса, а следовательно, и ось бруса, являющаяся геометрическим местом центров тяжести, расположены в нейтральном слое. Следовательно, радиус кривизны нейтрального слоя является радиусом кривизны изогнутой оси бруса.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно нейтральной оси :

Здесь представляет собой момент элементарной внутренней силы относительно оси .

Обозначим площадь части поперечного сечения бруса, расположенной над нейтральной осью, - под нейтральной осью.

Тогда представит собой равнодействующую элементарных сил приложенных выше нейтральной оси, ниже нейтральной оси (рис. 36.7).

Обе эти равнодействующие равны друг другу по абсолютной величине, так как их алгебраическая сумма на основании условия (13.7) равна нулю. Эти равнодействующие образуют внутреннюю пару сил, действующую в поперечном сечении бруса. Момент этой пары сил, равный т. е. произведению величины одной из них на расстояние между ними (рис. 36.7), представляет собой изгибающий момент в поперечном сечении бруса.

Подставим в уравнение (15.7) значение а по формуле (12.7):

Здесь представляет собой осевой момент инерции , т. е. оси, проходящей через центр тяжести сечения. Следовательно,

Подставим значение из формулы (16.7) в формулу (12.7):

При выводе формулы (17.7) не учтено, что при внешнем моменте направленном, как это показано на рис. 31.7, согласно принятому правилу знаков, изгибающий момент является отрицательным. Если учесть это, то перед правой частью формулы (17.7) необходимо поставить знак «минус». Тогда при положительном изгибающем моменте в верхней зоне бруса (т. е. при ) значения а получатся отрицательными, что укажет на наличие в этой зоне сжимающих напряжений. Однако обычно знак «минус» в правой части формулы (17.7) не ставится, а эта, формула используется лишь для определения абсолютных значений напряжений а. Поэтому в формулу (17.7) следует подставлять абсолютные значения изгибающего момента и ординаты у. Знак же напряжений всегда легко устанавливается по знаку момента или по характеру деформации балки.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно оси у:

Здесь представляет собой момент элементарной внутренней силы относительно оси у (см. рис. 35.7).

Подставим в выражение (18.7) значение а по формуле (12.7):

Здесь интеграл представляет собой центробежный момент инерции поперечного сечения бруса относительно осей у и . Следовательно,

Но так как

Как известно (см. § 7.5), центробежный момент инерции сечения равен нулю относительно главных осей инерции.

В рассматриваемом случае ось у является осью симметрии поперечного сечения бруса и, следовательно, оси у и являются главными центральными осями инерции этого сечения. Поэтому условие (19.7) здесь удовлетворяется.

В случае, когда поперечное сечение изгибаемого бруса не имеет ни одной оси симметрии, условие (19.7) удовлетворяется, если плоскость действия изгибающего момента проходит через одну из главных центральных осей инерции сечения или параллельна этой оси.

Если плоскость действия изгибающего момента не проходит ни через одну из главных центральных осей инерции поперечного сечения бруса и не параллельна ей, то условие (19.7) не удовлетворяется и, следовательно, нет прямого изгиба - брус испытывает косой изгиб.

Формула (17.7), определяющая нормальное напряжение в произвольной точке рассматриваемого сечения бруса, применима при условии, что плоскость действия изгибающего момента проходит через одну из главных осей инерции этого сечения или ей параллельна. При этом нейтральная ось поперечного сечения является его главной центральной осью инерции, перпендикулярной к плоскости действия изгибающего момента.

Формула (16.7) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна произведению модуля упругости Е на момент инерции Произведение будем называть жесткостью сечения при изгибе; она выражается в и т. д.

При чистом изгибе балки постоянного сечения изгибающие моменты и жесткости сечений постоянны по ее длине. В этом случае радиус кривизны изогнутой оси балки имеет постоянное значение [см. выражение (16.7)], т. е. балка изгибается по дуге окружности.

Из формулы (17.7) следует, что наибольшие (положительные - растягивающие) и наименьшие (отрицательные-сжимающие) нормальные напряжения в поперечном сечении бруса возникают в точках, наиболее удаленных от нейтральной оси, расположенных по обе стороны от нее. При поперечном сечении, симметричном относительно нейтральной оси, абсолютные величины наибольших растягивающих и сжимающих напряжений одинаковы и их можно определить по формуле

Для сечений, не симметричных относительно нейтральной оси, например для треугольника, тавра и т. п., расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон различны; поэтому для таких сечений имеются два момента сопротивления:

где - расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон.




Loading...Loading...