Динамическое и статическое давление воды. Испытание системы отопления

Часть 1: Тип гидравлической системы.

Насосная система - достаточно условное, обобщающие понятие, принятое для обозначения совокупности систем и групп оборудования используемых в искусственных напорных гидравлических системах.

Насосная система включает в себя трубопроводную систему, группу насосов, систему управления, диспетчеризации, запорной и регулирующей трубопроводной арматуры.

Соответственно, говоря о типах насосных систем, мы говорим и различных сочетаниях различных типов подсистем, выполняемых насосной системой задач.

Рассмотрим влияние отдельных подсистем и их видов на эффективность и надежность насосной системы в целом…

Первое, что нужно учитывать при анализе существующей насосной системы или проектировании новой, это тип гидравлической системы , который коррелирует с характером выполняемой задачи.

Обычно выделяют два вида гидравлических систем:

1. Закрытые (с закрытым контуром)

2. Открытые (с открытом контуром)

Закрытая гидравлическая система — это система циркуляции по закрытому для связи с атмосферой контуру.

Примером закрытой гидравлической системы является циркуляция в контре системы отопления/кондиционирования (рис. 1):

Основная особенность закрытой гидравлической системы — это отсутствие статической составляющей напора.

Открытая гидравлическая система — это система имеющая связь с атмосферой, выполняющая задачу перекачивания жидкости между двумя, имеющими геодезический перепад точками

Основная особенность открытой гидравлической системы — это наличие геодезического перепада высот между исходной и целевой точками перекачивания, т. е. наличие статической составляющей общего напора.

Примером открытой гидравлической системы являются системы водоснабжения, напорной канализации, дренажа.

Каким же образом, влияет тип гидравлической системы на эффективность и надежность насосной системы в целом?

Для того, чтобы это понять, необходимо вспомнить такое понятие как КПД насоса.

На рис. 2. представлена рабочая характеристика насоса с указанием номинальной рабочей точки.

Номинальная рабочая точка, характеризует производительность насоса в точке максимального КПД насоса (графически — проекция из очки максимального КПД на кривую характеристики насоса).

Максимальная эффективность насоса достигается при работе именно в точке максимального КПД (что в целом должно быть очевидно)

Об этом необходимо помнить при анализе эффективности системы и при подборе насосного оборудования для вновь проектируемой системы.

(На представленной диаграмме мы видим номинальную точку: расход: 323 м 2 /ч, напор — 46,35 м, КПД насоса — 82,6%)

При проектировании новой системы определяется расчетная рабочая точка . Она не всегда ложиться непосредственно на кривую характеристики насоса, но она должна быть обеспечена при работе насоса (быть ниже кривой характеристики).

Фактическая же рабочая точка , будет на пересечении кривой характеристики насоса и кривой гидравлического сопротивления системы, проходящей через расчетную рабочую точку. А вот вид кривой характеристики системы, как раз и зависит от типа применяемой гидравлической системы (закрытой или открытой).

Гидравлическая характеристика системы — это кривая гидравлического сопротивления трубопроводов (динамическая составляющая напора ), скорректированная с учетом напора, необходимого для преодоления геодезического перепада высот в систем (статическая составляющая напора ).

Гидравлическое сопротивление растет с ростом расхода по квадратичной зависимости.

Какие же будут различия закрытой и открытой гидравлических систем?

Как мы уже говорили, основное отличие закрытой и открытой системы заключается в статической составляющей напора. В закрытой системе её нет… Т.е. высота между различными точками трубопроводов в закрытой системе значения не имеет.

Проиллюстрируем на конкретном примере:

Допустим расчетная рабочая точка насоса — расход: 280 м 2 /ч, напор — 35 м.

Вот как будет выглядеть кривая характеристики насоса, кривая характеристики системы и результирующая фактическая рабочая точка в закрытой системе(рис. 3):

На рис. 3., мы видим:

Нашу расчетную точку (расход: 280 м 2 /ч, напор — 35 м).

-характеристику насоса (синяя линия)

-характеристика системы (Красная линия) — это кривая гидравлического сопротивления трубопроводов

-кривая КПД насоса (черная линия)

Как мы помним, максимальная эффективность насоса достигается в номинальной рабочей точке, соответствующей точке максимального КПД (нашем примере: расход: 323 м 2 /ч, напор — 46,35 м, КПД насоса — 82,6%)

Фактическая же точка в закрытой гидравлической системе в данном примере имеет параметры: расход: 322 м 2 /ч, напор — 46,45 м, КПД насоса — 82,6%.

Т.е. мы фактически попали в точку максимального КПД (расход и напор отличаются от номинальных незначительно, КПД полностью соответствует). С точки зрения надежности насоса это достаточно хороший подбор. Этот насос в этой конкретной системе будет работать долго и безотказно.

Однако, для достижения максимальной эффективности, при подборе нужно стремится, чтобы фактическая рабочая точка было максимально близко к расчетной

Такой подбор насоса, как в нашем примере оправдан только в том случае, если кривая характеристики ближайшего меньшего типоразмера насоса оказывается ниже расчетной точки. Для целей данной статьи, мы принимаем, что мы имеем именно такой случай.

В открытой системе картина будет отличаться на столько, на сколько велика статическая составляющая напора.

Статическая составляющая напора — это давление, необходимое для преодоления геодезического перепада в системе. Этот перепад, в отличие от гидравлического сопротивления системы, есть независимо от расхода в системе и нам всегда надо преодолевать этот перепад.

Статическая составляющая не зависит от расхода, как динамическая.

Соответственно, для нахождения фактической рабочей точки насоса, нам необходимо скорректировать кривую характеристики системы с учетом статической составляющей.

В этом случае, кривая характеристики системы строиться уже не из ноля координат, а из точки на оси напора, соответствующей его (напора) статической составляющей.

На рис. 4. представлена кривая характеристики открытой системы со статическим напором 5 м (геодезический перепад высот) с той же расчетной рабочей точкой (расход: 280 м 2 /ч, напор — 35 м).

При той же расчетной точке, фактическая рабочая точка уже сдвигается… расход: 327 м 2 /ч, напор — 45,98 м. КПД уже падает на 0,1% (82,5%)…

Если геодезический перепад будет значительным — параметры фактической рабочей точки могут измениться критически!

На следующей диаграмме (рис. 5) представлена система с все той же расчетной точкой 280 м 2 /ч, 35 м, но со статической составляющей напора в 27 м.

Как видно, фактическая точка отличается значительно (расход: 372 м 2 /ч, напор — 41,2 м. КПД упал уже на 2%) и опасно приблизилась к краю рабочей характеристики насоса.

Если статическую составляющую принять — 29 м, то фактически этот насос в такой системе работать уже не будет…

Как видно из рис. 6, программа подбора характеристику системы уже не строит…. Фактической рабочей точки на кривой характеристики насоса просто нет…

Неработоспособность насоса в системе, это хоть и самая серьезная, но только одна из опасностей невнимательного отношения к типу гидравлической системы и игнорирования статической составляющей напора.

В данном примере насос работать просто не будет, и неправильный подбор будет налицо… Есть с кого спросить...

Есть и другие случаи, которые не столько очевидны, но имеют не менее серьезные последствия… И неочевидность их лишь усугубляет решение проблем, которые, порой, длятся годами...

Еще два момента необходимо учитывать:

1. Если фактическая рабочая точка насоса далеко от номинальной, а, соответственно, от точке максимального КПД насос, то имеет место очевидное снижение эффективности насосной системы. В нашем примере снижение КПД не велико, однако не все электродвигатели имеют такую пологую кривую КПД, и отклонения от точки максимального КПД насоса может повлечь значительное снижение КПД насоса (на 10 и даже 20%).

2. Отклонение от номинальной рабочей точки влечет также снижение надежности насоса. Выход рабочей точки за пределы рабочего диапазона насоса резко снижает надежность его работы. Подробнее об этом читайте в статье «КПД насоса и его надежность».

Грамотный подбор насосов и анализ системы требует квалификации, времени, но уделять внимание этому вопросу необходимо, так как любая из описанных ситуаций в конечном итоге ведет к потере денег, ресурсов, а, зачастую, и репутации.

Поэтому всегда лучше обратиться за помощью к узким специалистам для решения подобных специфических задач.

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Реография.

Составитель: Преподаватель

Ковалева Л.В.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы


Жидкости:

Следовательно, А р = A h + A D

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

Чтобы разобраться с этим вопросом, разберем основные термины, от которых зависит напор и давление насоса.

Геодезическая (статическая) высота всасывания насоса

Она определяется как разница в геодезическом уровне между впускным патрубком насоса и свободной по-верхностью жидкости в наиболее низко расположенном резервуаре, измеряется в метрах (м).

Статическая высота подачи (статический напор) насоса

Она определяется как разница в геодезическом уровне между выпуск-ным патрубком и наивысшей точкой гидросистемы, в которую необходимо подать жидкость.

Потери давления насоса на всасывании

Это потери на трение между жидкостью и стенками трубопровода и зависят от вязкости жидкости, качества шероховатости поверхности стенок трубопровода и скорости потока жидкости. При увеличении скорости потока в 2 раза потери давления возрастают во второй степени

Информацию о потерях давления в трубопроводе, коленах, фитингах и т.п. при различных скоростях потока можно получить у поставщика.

Конечное избыточное давление насоса

Это давление, которое необходимо иметь в той точке, куда должна подаваться жидкость.

Начальное избыточное давление насоса

Это давление на свободной поверхности жидкости в месте водозабора. Для открытого резервуара или бака это просто атмосферное (барометрическое) давление.

Столб воды высотой 10 м оказывает такое же давление, что и столб ртути (Hg) высотой 0,7335 м. Умножив высоту столба (напор) на плотность жидкости и ускорение свободного падения (g), получим давление в ньютонах на квадратный метр (Н/м2) или в паскалях (Па). Поскольку это очень незначительная величина, в практику эксплуатации насосов ввели единицу измерения, равную 100000 Па, названную баром.

Уравнение можно решить в метрах высоты столба жидкости:

ρv ] g ] hv = ρHg ] g ] hHgρv ] hv = ρHg ] hHghv = hHg ]

Чтобы разобраться с этим вопросом, разберем основные термины, от которых зависит напор и давление насоса." />

  • плотность (“тяжесть” жидкости)
  • давление насыщенных паров (температура кипения)
  • температура
  • вязкость (“густоту” жидкости)
2. Объем, который необходимо по­дать (расход) 3. Высота всасывания:разница в уровне между насосом и точкой забора жидкости 4. Высота нагнетания: разница в уровне между насосом и наивысшей точкой, в которую пода­ется жидкость 5. Потери давления на всасывании (потери на трение) 6. Потери давления в напорном тру­бопроводе (потери на трение) 7. Конечное избыточное давление 8. Начальное избыточное давление Когда все эти данные известны, мож­но определить режим работы насоса и выбрать его оптимальную модель.

Характеристики жидкости

Для выбора оптимального насоса необходимо иметь полную инфор­мацию о характеристиках той жид­кости, которая должна подаваться потребителю. Естественно, что “более тяжелая” жидкость потребует больше затрат энергии при перекачивании данного объема. Чтобы описать, насколько одна жидкость “тяжелее” другой, ис­пользуется такое понятие, как “плот­ность” или “удельный вес”; этот па­раметр определяется как масса (вес) единицы объема жидкости и обычно обозначается как “ρ” (греческая бук­ва “ро”). Измеряется в килограммах на кубометр (кг/м 3). Любая жидкость при определенных температуре и давлении стремится испариться (температура или точка начала кипения); повышение давле­ния вызывает повышение температуры и наоборот. Таким образом, при более низком давлении (даже воз­можно при вакууме), которое может иметь место со стороны всасывания насоса, жидкость будет иметь более низкую температуру кипения. Если она близка или в особенности ниже текущей температуры жидкости, воз­можно образование пара и возник­новение кавитации в насосе, что в свою очередь может иметь отрица­тельные последствия для его харак­теристик и способно вызвать серьез­ные повреждения (смотрите главу о кавитации). Вязкость жидкости вызывает потери на трение в трубах. Численное значе­ние этих потерь можно получить у из­готовителя конкретного насоса. Необходимо учитывать, что вязкость “густых” жидкостей, таких как масло, с ростом температуры падает. Расход воды Он определяется как объем, кото­рый должен быть подан за указанное время, и обозначается как “Q”. При­меняемые единицы измерения: как правило, это литры в минуту (л/мин) для насосов небольшой мощности/ производительности, кубометры в час (м 3 /ч) для насосов средней про­изводительности и, наконец, кубоме­тры в секунду (м 3 /с) для самых мощ­ных насосов. Размеры поперечного сечения тру­бопровода определяются объемом, который должен быть подан потре­бителю при данной скорости потока жидкости “v”:

Геодезическая (статическая) высота всасывания

Она определяется как разница в гео­дезическом уровне между впускным патрубком насоса и свободной по­верхностью жидкости в наиболее низ­ко расположенном резервуаре, изме­ряется в метрах (м) (рис. 3, поз. 1).

Статическая высота подачи (статический напор)

Она определяется как разница в гео­дезическом уровне между выпуск­ным патрубком и наивысшей точкой гидросистемы, в которую необходи­мо подать жидкость (рис. 3, поз. 2).

Потери давления на всасывании

Это потери на трение между жидкос­тью и стенками трубопровода и за­висят от вязкости жидкости, качества шероховатости поверхности стенок трубопровода и скорости потока жидкости. При увеличении скорости потока в 2 раза потери давления воз­растают во второй степени (рис. 4, поз. 1). Информацию о потерях давления в трубопроводе, коленах, фитингах и т.п. при различных скоростях потока можно получить у поставщика. Потери давления в напорном трубопроводе Смотрите описание, приведенное выше (рис. 4, поз. 2).

Конечное избыточное давление

Это давление, которое необходимо иметь в той точке, куда должна пода­ваться жидкость (рис. 5, поз. 1).

Начальное избыточное давление

Это давление на свободной поверх­ности жидкости в месте водозабора. Для открытого резервуара или бака это просто атмосферное (бароме­трическое) давление (рис. 5, поз. 2).

Связь между напором и давлением

Как можно видеть из рис. 6, столб воды высотой 10 м оказывает такое же давление, что и столб ртути (Hg) высотой 0,7335 м. Умножив высоту столба (напор) на плотность жидко­сти и ускорение свободного падения (g), получим давление в ньютонах на квадратный метр (Н/м 2) или в паска­лях (Па). Поскольку это очень незна­чительная величина, в практику экс­плуатации насосов ввели единицу измерения, равную 100000 Па, наз­ванную баром. Уравнение на рис. 6 можно решить в метрах высоты столба жидкости: Таким образом, высоту столба жид­костей с различной вязкостью можно привести к эквивалентной высоте во­дяного столба. На рис. 7 приводятся коэффициенты преобразования для множества различных единиц изме­рения давления. Ниже показан пример расчета общего гидравлического напора со схемой установки насоса.
Гидравлическая мощность (P hyd) насо­са определяет объем жидкости, пода­ваемой при данном напоре за данное время, и может быть рассчитана с по­мощью следующей формулы:

Пример

Объем в 35 м 3 воды за час должен быть перекачан из колодца глубиной 4 м в бак, размещенный на высоте 16 м относительно уровня установки насоса; конечное давление в баке должно быть 2 бара. Потери напора на трение во всасывающем трубопро­воде принимаются равными 0,4 м, а в напорном трубопроводе составляют 1,3 м включая потери в коленах. Плотность воды предположительно составляет 1000 кг/м 3 и значение уско­рения свободного падения 9,81 м/с 2 . Решение: Общий напор (H): Высота всасывания - 4,00 м Потери напора на всасывании - 0,40 м Высота нагнетания - 16,00 м Потери давления в напорном трубопроводе - 1,30 м Конечное давление: - 2 бара*~20,40м Минус 1 атм**~ -9,87 м Общий напор - 32,23 м Гидравлическая мощность определя­ется по формуле: * В данном примере конечное из­быточное давление дано как абсо­лютное давление, т.е. как давление, измеренное относительно абсолют­ного вакуума. ** Если конечное избыточное давле­ние дано как абсолютное, то началь­ное избыточное давление необходи­мо вычесть, поскольку это давление “помогает” насосу всасывать жид­кость. Вода через всасывающий патрубок насоса попадает на вход рабочего колеса и под действием вращаю­щихся лопаток испытывает положи­тельное ускорение. В диффузоре кинетическая энергия потока преоб­разуется в потенциальную энергию давления. В многоступенчатых насо­сах поперечное сечение диффузора со встроенными неподвижными ло­патками называют “направляющим аппаратом”. Из схемы на рис. 10 видно, что потенциальная энергия в виде давле­ния в насосе растет в направлении от всасывающего к напорному па­трубку, поскольку гидродинамиче­ское давление, создаваемое рабо­чим колесом (кинетическая энергия скорости потока), преобразуется в потенциальную энергию давления в диффузоре.

Рабочие характеристики насоса

На рис. 11 представлена типичная эксплуатационная характеристика центробежного насоса “Q/H”. Из нее видно, что максимальное дав­ление нагнетания достигается, когда подача насоса равна нулю, т.е. когда напорный патрубок насоса закрыт. Как только поток в насосе возраста­ет (увеличивается объем перекачи­ваемой жидкости), высота нагнета­ния падает. Точная характеристика зависимости подачи Q от напора H определяет­ся изготовителем опытным путем на испытательном стенде. Например (рис. 11), при напоре H 1 насос бу­дет подавать объем Q 1 и аналогично при H 2 - Q 2 .

Эксплуатационная характеристика насоса

Как уже было показано выше, поте­ри напора на трение в трубопроводе зависят от качества шероховатости поверхности стенок трубопровода, и квадрата скорости потока жидкости и, конечно же, от протяженности тру­бопровода. Потери давления на трение можно представить на графике “H/Q” как кри­вую характеристики гидросистемы. В случае замкнутых систем, таких как системы центрального отопле­ния, текущая высота нагнетания мо­жет не учитываться, поскольку она уравновешивается положительным напором со стороны всасывающего патрубка.
Потери давления [Па/м] при температуре t = 60°C. Рекомендуемые потери в трубах – не более 150 Па/м.

Рабочая точка

Рабочая точка – это точка пересече­ния графика характеристики насоса с графиком характеристики гидроси­стемы. Понятно, что любые изменения в гидросистеме, например измене­ние проходного сечения клапана при его открытии или образование отложений в трубопроводе, сказы­ваются на характеристики гидроси­стемы, в результате чего положение рабочей точки изменяется. Анало­гичным образом изменения в насо­се, например износ рабочего колеса или изменении частоты вращения, вызовут возникновение новой рабо­чей точки.

Последовательно включенные насосы

Многоступенчатые насосы можно рассматривать как пример последо­вательно включенных одноступенча­тых насосов. Конечно, в этом случае невозможно разобщить отдельные ступени, что иногда бывает желатель­но при проверке состояния насоса. Поскольку неработающий насос соз­дает существенное сопротивление, не­обходимо предусмотреть байпасную линию и обратный клапан (рис. 14). Для работающих последовательно насосов общий напор (рис. 15) при любой заданной подаче определяет­ся суммой значений высоты нагнета­ния каждого отдельного насоса.

Параллельно включенные насосы.

Такая схема монтажа используется с целью обеспечения контроля со­стояния насосов или для обеспече­ния эксплуатационной безопасности, когда требуется наличие вспомога­тельного или резервного оборудо­вания (например, сдвоенные насо­сы в отопительной системе). В этом случае также необходимо устанавли­вать обратные клапаны для каждого из насосов, чтобы предотвратить об­разование противотока через один из неработающих насосов. Этим тре­бованиям в сдвоенных насосах удо­влетворяет переключающий клапан типа заслонки. Для параллельно работающих насо­сов общая подача (рис. 17) опреде­ляется как сумма значений подачи отдельных насосов при постоянном напоре.

КПД насоса

КПД насоса показывает, какая часть механической энергии, переданной насосу через его вал, преобразова­лась в полезную гидравлическую энергию. На КПД влияют:
  • форма корпуса насоса;
  • форма рабочего колеса и диф­фузора;
  • качество шероховатости поверх­ности;
  • уплотнительные зазоры между всасывающей и напорной поло­стями насоса.

Чтобы потребитель имел возмож­ность определить КПД насоса в кон­кретной рабочей точке, большинство изготовителей насосного оборудова­ния прилагают к диаграммам рабо­чих характеристик насоса диаграм­мы с графиками характеристик КПД (рис. 18).

Типовые закономерности

Приведенные далее типовые зако­ номерности демонстрируют тео­ретическое влияние диаметра ( d ) рабочего колеса на напор , подачу и потребляемую мощность . Напор пропорционален диаметру во второй степени: Согласно этой закономерности, удво­ение диаметра повысит напор в 4 раза. Подача пропорциональна диаметру в третьей степени: Согласно этой закономерности, удво­ение диаметра повысит подачу в 8 раза. Потребляемая мощность пропорцио­нальна диаметру в пятой степени: Согласно этой закономерности, удво­ение диаметра повысит потребляе­мую мощность в 32 раза.

Типовые закономерности

Приведенные далее типовые зако­ номерности демонстрируют теоре­ тическое влияние частоты враще­ ния (n) рабочего колеса на напор , подачу и потребляемую мощность . Подача пропорциональна частоте вращения: Согласно этой закономерности, удво­ение частоты вращения в два раза по­высит подачу. Напор пропорционален квадрату ча­стоты вращения: Согласно этой закономерности, удво­ение частоты вращения в 4 раза по­высит напор. Потребляемая мощность пропорци­ональна частоте вращения в третьей степени: Согласно этой закономерности, удво­ение частоты вращения в 8 раз повы­сит потребляемую мощность.

Потребляемая мощность

P 1 : Мощность, потребляемая электро­двигателем из электросети. У электродвигателей, непосредствен­но присоединенных к валу насосов, как это имеет место в приводе цир­куляционных насосов, максимальное значение потребляемой мощности ука­зывается на фирменной табличке с тех­ническими данными. P 1 также можно определить по следую­щей формуле: (3-фазные электродвигатели) (1-фазные электродвигатели) где: V = напряжение (В) I = сила тока (A) cos ϕ = коэффициент мощности (-) P 2 : мощность на валу электродвигателя. В случае, когда электродвигатель и на­сос являются отдельными узлами (вклю­чая стандартные и погружные электро­двигатели), на фирменной табличке указывается максимальная мощность на валу электродвигателя. P 3 : Мощность, потребляемая насосом Текущая нагрузка электродвигателя может быть определена по кривой мощ­ности насоса. В случае непосредствен­ного присоединения электродвигателя к валу насосов: P 3 = P 2 . P 4 : Мощность насоса (P hydraulic) Значение мощности насоса определя­ется по формуле:

Адаптация насосов к переменным режимам эксплуатации

Потери давления в гидросистеме рассчитываются для определенных специфических условий эксплуа­тации. На практике характеристика гидросистемы почти никогда не со­впадает с теоретической из-за коэф­фициентов запаса прочности, закла­дываемых в гидросистему. Рабочая точка гидросистемы с насо­сом – это всегда точка пересечения графика характеристики насоса с графиком характеристики гидроси­стемы, следовательно, подача обыч­но бывает больше, чем требуется для новой гидросистемы. Такое несоответствие может соз­дать проблемы в гидросистеме. В отопительных контурах может воз­никать шум, вызванный потоком, в конденсатных системах – кавитация, а в некоторых случаях неоправданно большая подача приводит к потерям энергии. Вследствие этого возникает необ­ходимость смещения рабочей точки (точки пересечения графиков обоих характеристик) путем регулировки насоса и подстройки гидросистемы. На практике применяют один из ука­занных ниже способов:
  1. Изменение характеристики гид­росистемы путем прикрытия дрос­сельного клапана (дросселирова­ние) (рис. 22).
  2. Изменение характеристики насо­са за счет уменьшения наружно­го диаметра (путем механической обработки) его рабочего колеса (рис. 23).
  3. Изменение характеристики на­соса путем регулировки частоты вращения (рис. 24).

Регулирование подачи с помощью дроссельного клапана

Уменьшение проходного сечения дроссельного клапана в гидроси­стеме вызывает повышение потерь давления (гидродинамического на­пора H dyn), делая кривую характери­стики гидросистемы более крутой, в результате чего рабочая точка сме­щается в направлении более низкой подачи (смотрите рис. 25). В результате снижается потребляе­мая мощность, поскольку центробеж­ные насосы имеют характеристику мощности, которая уменьшается при уменьшении подачи. Однако потери мощности при дроссельном регули­ровании в гидросистеме с высоким значением потребляемой мощности будут значительны, поэтому в таких случаях необходимо проводить спе­циальные расчеты для оценки рен­табельности метода регулирования подачи с помощью дроссельного клапана.

Модификация рабочего колеса

В тех случаях, когда снижение про­изводительности насоса и напо­ра требуется постоянно, наиболее оптимальным решением может стать уменьшение наружного диаметра ра­бочего колеса. При этом протачивают по наружно­му диаметру либо все рабочее коле­со, либо только торцы лопаток. Чем больше будет занижение наружного диаметра, тем ниже станет КПД на­соса. Снижение КПД обычно бывает бо­лее значительно в тех насосах, кото­рые работают на высоких оборотах. У низкооборотных насосов оно не столь заметно, в особенности, если уменьшение наружного диаметра не­значительно. Когда уменьшение наружного диаме­тра незначительно, то с достаточно высокой степенью точности можно воспользоваться следующими соот­ношениями: На рис. 27 представлен способ определения заниженного диаметра D x с помощью диаграммы характе­ристики “H/Q” в линейных координа­тах. Начало координат (Q = 0, H = 0) соединяется с новой рабочей точкой (Q x , H x) прямой линией, продолжен­ной до пересечения с характеристи­кой имеющегося насоса (Q, H) в точ­ке “s”. После этого новый диаметр (D x) рассчитывается по следующей формуле: Однако эти зависимости недействи­тельны в случае необходимости значительного снижения произво­дительности насоса. В таком случае рекомендуется проводить заниже­ние рабочего колеса в несколько этапов. Сначала занижение диаме­тра рабочего колеса выполняется до размера, несколько превышающего значение D x , рассчитываемое как указывалось выше. После этого на­сос подвергается испытаниям, после которых можно определить оконча­тельный диаметр. В серийном производстве этого мож­но избежать. Имеются графики ра­бочих характеристик для насосов, оборудованных рабочими колесами с различным занижением наружного диаметра (смотрите рис. 28), непо­средственно по которым можно рас­считать значение D x , используя выше­указанные формулы.

Регулирование частоты вращения

Изменение частоты вращения вы­зовет изменения в рабочих харак­теристиках центробежного насоса. Воспользуемся типовыми законо­мерностями, указанными ранее:

Кавитация

Наиболее часто встречающиеся при эксплуатации насосов проблемы связаны с условиями всасывания на входе гидросистемы и почти всегда они бывают вызваны слишком низ­ким гидростатическим давлением (подпором) на входе насоса. Причина этого может корениться либо в выборе насоса с неоптималь­ными для данных условий эксплуа­тации параметрами, либо в ошибках, допущенных при проектировании ги­дросистемы. Вращение рабочего колеса отбрасы­вает жидкость к поверхности корпуса насоса, в результате чего со сторо­ны всасывающей полости рабочего колеса возникает разряжение. Это вызывает подсос жидкости через всасывающий клапан и трубопро­вод, которая поступает к рабочему колесу, где она опять отбрасывается к поверхности корпуса насоса. Раз­ряжение на входе насоса зависит от разницы между уровнем положения впускного отверстия и поверхности перекачиваемой жидкости, от потерь давления на трение во всасывающем клапане и трубопроводе, а также от плотности самой жидкости. Это разряжение ограничено давлени­ем насыщенного пара жидкости при данной температуре, т.е. давлением, при котором будут образовываться пузырьки пара. Любая попытка сни­зить гидростатическое давление до величины, меньшей чем давление насыщенного пара, приведет к тому, что жидкость отреагирует на это образованием пузырьков пара, по­скольку она начнет закипать. В насосе кавитация возникает тог­да, когда давление с той стороны лопаток рабочего колеса, которая обращена в сторону всасывающей полости (обычно вблизи впускного отверстия насоса), падает ниже дав­ления насыщенного пара жидкости, вызывая образование пузырьков газа. Будучи перенесенными в об­ласти высокого давления в рабочем колесе, эти пузырьки разрушаются (взрываются), а возникающая при этом волна давления может вызвать повреждение насоса (рис. 31). Это повреждение, которое может возникнуть в течение нескольких минут или через несколько лет, на­столько серьезно, что может отри­цательно подействовать не только на насос, но и на электродвигатель. Наиболее уязвимыми деталями при этом являются подшипники, сварные швы и даже поверхности рабочего колеса. Масштабы повреждений рабочего колеса зависят от характеристик ма­териала, из которого оно изготовле­но; например, из таблицы видно, что при одних и тех же условиях ущерб для рабочего колеса из нержавею­щей стали составляет всего лишь 5% от ущерба, причиненного рабочему колесу из чугуна. Потеря в массе различных материалов (при сравнении за основу взят чугун = 1,0): С явлением кавитации связаны также повышенный уровень шума, падение напора и нестабильность эксплуата­ции. Зачастую повреждение остает­ся не выявленным до тех пор, пока насос и электродвигатель не будут подвергнуты разборке.

Расчеты по устранению опасности кавитации

Кавитационный запас H max насоса, необходимый для устранения опас­ности кавитации, рассчитывается следующим образом: H max: Кавитационный запас насоса (смотрите рис. 33). Если он положительный , насос может работать при данной высоте всасывания. Если он отрицательный , для работы насоса необходимо создать условия, при которых он станет положительным. H b: Атмосферное давление со сто­роны насоса; это – теоретиче­ски максимальная высота вса­сывания. Это значение H b зависит от плотно­сти жидкости и значения “g” со сто­роны насоса (рис. 32). H fs: Потери давления на трение во всасывающем клапане и присо­единенном трубопроводе также зависят от плотности жидкости.

NPSH: N et P ositive S uction H ead

Этот параметр отражает минималь­ное давление на всасывании, не­обходимое для безаварийной экс­плуатации. Он характеризует потери давления на трение на участке от всасывающего патрубка насоса до той точки первого рабочего колеса, в которой давление минимально, и определяет гидравлические условия, при которых насос не в состоянии всасывать цельный водяной столб высотой 10,33 м. Таким образом, зна­чение NPSH будет расти с ростом по­дачи, что можно видеть из графика характеристики на рис. 35 конкрет­ного насоса. Для циркуляционных насосов график NPSH не используется; вместо этого на рис. 34 представлена таблица с указанием минимального давления на всасывании, необходимого при различных значениях температуры рабочей жидкости. H v : Этот параметр отражает давле­ние насыщенного пара перека­чиваемой жидкости. Он вклю­чен в уравнение, поскольку при более высокой температуре жидкость начинает испаряться быстрее. H v также зависит от плотности жидкости: H s : Этот параметр представляет собой запас прочности, кото­рый должен определяться в конкретных условиях в зависи­мости от степени надежности и достоверности применяемой методики расчета. На практи­ке его берут равным 0,5-1 м. В случае присутствия в воде газа это значение часто выби­рают равным 2 м.

Как избежать кавитации

Данная аргументация основана на приведенной выше формуле: H max = H b - H fs - NPSH - H v - H s и учитывает влияние каждого из чле­нов уравнения. H max : Насос всегда необходимо уста­навливать как можно ниже или потребуется поднять уровень жидкости со стороны всасыва­ния. Последний способ часто бывает наиболее дешевым ре­шением. Положительное дав­ление на всасывании, созда­ваемое насосом (если таковой имеется) или расширительным бачком, должно поддерживать­ся как можно более высоким. H b : Этот показатель является по­стоянным при перекачивании определенной жидкости в дан­ном месте. H fs : Всасывающий трубопровод должны быть как можно более коротким и иметь минимальное количество колен, клапанов, вентилей и фитингов. NPSH : Следует выбирать насос с наи­меньшим потребным NPSH. H v : Этот параметр может снижать­ся при падении температуры жидкости (температуры окру­жающей среды). H s : Устанавливается индивиду­ально. Наиболее простой способ избежать кавитации – это снизить подачу насо­са путем частичного закрытия нагне­тательного (или напорного) клапана; в результате этого понизится требу­емое значение NPSH и H fs , следова­тельно возрастет значение H max .

Альтернативная методика расчета для устранения опасности кавитации

Многие предпочитают преобразо­вать формулу в функции NPSH сле­дующим образом: Это дает имеющееся значение NPSH available для данной гидросисте­мы, которое затем можно сравнить с требуемым значением NPSH required , указанным на графиках рабочих характеристик соответствующего на­соса. Таким образом, если NPSH available ≥NPSH required кавитации удается избежать. Однако если NPSH available ≤NPSH required то опасность возникновения кавита­ции сохраняется.

Подключение электродвигателя « GRUNDFOS » в соответствии с обозначением на его шильдике

Расшифровка обозначений : - “ означает “от - до“; “ / “ означает, что электродвигатель может подключаться двумя разными вариантами; “ D “ обозначение соединения обмо­ток электродвигателя по схеме «тре­угольник»; “ Y “ обозначение соединения обмоток электродвигателя по схеме «звезда». 1 х 220-230 / 240 V
  1. Двигатель может быть подключен в однофазную сеть переменного тока напряжением U = 1 x 220-230В.
  2. Двигатель может быть подключен в однофазную сеть переменного тока напряжением U = 1 x 240В.
3 х 220 240D / 380 415Y V
  1. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 380-415В по схеме «звезда».
  2. Двигатель может быть подклю­чен в трехфазную сеть переменного тока напряжением U = 3 x 220-240В по схеме «треугольник» (например в Бельгии, в Норвегии, в Италии, во Франции).
  3. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 220-240В по схеме «звезда-треугольник».
3 х 380 415D V
  1. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 380-415В по схеме «треугольник».
  2. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 380-415В по схеме «звезда-треугольник».

Понятия, смысл которых не раскрывается в пособии, разъясняются здесь.

Абсолютное давление
Абсолютное давление - это отношение силы, действующей на бесконечно малую поверхность к площади этой поверхности:

Где dF – сила, действующая на бесконечно малую поверхность, dS – бесконечно малая площадь поверхности.
В системе СИ абсолютное давление выражается в [Н/м 2 ] или [Па].

Атмосферное давление
Атмосферное давление - это абсолютное давление, создаваемое атмосферой. Величину атмосферного давление определяют с помощью барометров, поэтому второе название ему – барометрическое.

Вакууметр
Вакууметр - прибор для измерения давления ниже атмосферного. Наибольшее распространение на практике получили механические пружинные вакууметры. В силу специфики своего устройства, механические вакууметры показывают не абсолютное давление, а разрежение (вакуум), т.е. величину, на которую абсолютное давление меньше чем атмосферное.

Высота всасывания
Высота всасывания - расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

Геометрический напор
В узком понимании геометрический напор - это высота подъема жидкости, т.е. расстояние по вертикали от уровня жидкости в расходном резервуаре до уровня в приемном резервуаре.
В более широком понимании геометрический напор – это вертикальное положение некоторого сечения, выделенного в жидкости над произвольно выбранной плоскостью отсчета.

Диафрагма
Диафрагма - устанавливаемое в трубопроводе техническое устройство со сквозным отверстием для создания и отбора перепада давления среды путем местного уменьшения сечения трубопровода (сужение потока), применяющееся совместно с дифманометром для измерения расхода жидкости в трубопроводе.

Дифманометр (дифференциальный манометр)
Дифманометр - прибор для измерения разницы (перепада) давления в двух различных точках пространства, применяющийся для определения расхода жидкости или газа в трубопроводах, а также уровня жидкости в резервуарах.

Задвижка
Задвижка - трубопроводная арматура, запирающий элемент которой перемещается возвратно-поступательно перпендикулярно направлению потока жидкости. Задвижки используются для полного перекрытия трубопровода. Реже задвижки используются для регулирования подачи (расхода) жидкости за счет частичного перекрытия трубопровода.

Избыточное давление
Избыточное давление - это разница между абсолютным и атмосферным (барометрическим) давлением при условии, что абсолютное давление больше атмосферного:

,

Где p изб – избыточное давление; p – абсолютное давление; p атм – атмосферное давление.
Величину избыточного давления измеряют при помощи манометров.

Кавитация
Кавитация - образование и схлопывание пузырьков пара в потоке жидкости. Кавитация возникает в том случае, когда абсолютное давление в потоке жидкости снижается до давления ее насыщенного пара. Кавитация – крайне нежелательное явление при эксплуатации насосов, поскольку оно сопровождается вибрацией элементов насоса и трубопровода, разрушением рабочих органов насоса.

Коэффициент местного сопротивления x
Коэффициент местного сопротивления используется для определения потерь напора на местных гидравлических сопротивлениях (задвижки, отводы, фильтры, клапаны и т.д.). Он зависит в общем случае от типа сопротивления, диаметра трубопровода, режима течения. Численные значения коэффициента местного сопротивления приведены в справочной литературе. [3,4 ]

Коэффициент трения l
Коэффициент трения используется для определения потерь напора на гидравлическом трении. Он зависит в общем случае от режима течения, шероховатости трубопровода и диаметра трубопровода. Для определения коэффициента трения можно использовать следующие формулы:

Формула Применимость Область трения
Ламинарное течение
Гидравлически
гладкие трубы
Гидравлически
шероховатые трубы
Автомодельная
(квадратичная)
область

где d – диаметр трубопровода [м]; е – абсолютная шероховатость материала труб [м].

Критерий Рейнольдса Re
Критерий Рейнольдса характеризует режим течения жидкости и определяется по формуле:

Где W – скорость течения жидкости [м/с]; d – диаметр трубопровода [м]; r - плотность жидкости [кг/м 3 ]; m - коэффициент динамической вязкости жидкости [Па. с].
Скорость жидкости можно определить через расход и площадь поперечного сечения потока:

Если поток течет чере трубу круглого сечения с диаметром d, то площадь поперечного сечения равна:

.

По численному значению критерия Рейнольдса можно судить о режиме (характере) течения жидкости:

Жидкость течет в ламинарном режиме. Ламинарному режиму течения свойственно движение частиц жидкости по траекториям, параллельным общему направлению потока.
Жидкость течет в переходном (слабо развитом турбулентном) режиме. Этому режиму свойственно появление вихрей. Вихрь – это движение группы частиц по вращательной траектории. За счет вихрей поток жидкости перемешивается в поперечном направлении. Чем ближе значение критерия Рейнольдса к 10000, тем больше вихрей.
Жидкость течет в турбулентном режиме. Турбулентный режим сопровождается возникновением большого количества вихрей, перемешивающих жидкость.

Мановакууметр
Мановакууметр - прибор для измерения давления. Мановакууметр имеет две шкалы. Одна шкала используется для определения избыточного давления, а другая для определения вакуума. Такие приборы используются в том случае, когда давление, которое нужно определить, может быть как выше, так и ниже атмосферного.

Манометр
Манометр - прибор для измерения давления выше атмосферного. Наибольшее распространение на практике получили механические пружинные манометры. В силу специфики своего устройства, механический манометр, показывает не абсолютное давление, а избыточное давление, т.е. величину, на которую абсолютное давление больше чем атмосферное.

Обратный клапан
Обратный клапан - элемент трубопровода, допускающий прохождение жидкости только в одном направлении.

Разрежение (вакуум)
Разрежение - это разница между атмосферным (барометрическим) и абсолютным давлением при условии, что абсолютное давление меньше атмосферного:

,

Где p вак – разрежение; p – абсолютное давление; p атм – атмосферное давление. Величину разрежения измеряют при помощи вакуумметров.

Статический напор
При рассмотрении трубопроводной сети статическим напором называют энергию, отнесенную к 1 Н жидкости, которую необходимо затратить, для того, чтобы жидкость поддерживалась неподвижно в трубопроводной сети. Статический напор простейшей трубопроводной сети определяется по формуле:

,

Где H г – геометрический напор; P 2 – давление в приемном резервуаре; P 1 – давление в расходном резервуаре.
Не трудно заметить, что чем больше давление в приемном резервуаре, т.е. резервуаре, куда должна перекачиваться жидкость, тем больший статический напор нужно обеспечивать, чтобы противодействовать этому давлению.



Loading...Loading...