Где углерод. Углерод — характеристика элемента и химические свойства

УГЛЕРОД , С, химический элемент IV группы периодической системы, атомный вес 12,00, порядковый номер 6. До последнего времени углерод считался не имеющим изотопов; лишь недавно удалось с помощью особо чувствительных методов обнаружить существование изотопа С 13 . Углерод - один из важнейших элементов по распространенности, по многочисленности и разнообразию его соединений, по биологическому значению (как органоген), по обширности технического использования самого углерода и его соединений (как сырья и как источника энергии для промышленных и бытовых нужд) и наконец по своей роли в развитии химической науки. Углерод в свободном состоянии обнаруживает ярко выраженное явление аллотропии, известное уже более полутора веков, но до сих пор не вполне изученное как по причине чрезвычайной трудности получения углерода в химически чистом виде, так и потому, что большинство констант аллотропных модификаций углерода сильно меняется в зависимости от морфологических особенностей их структуры, обусловленных способом и условиями получения.

Углерод образует две кристаллические формы - алмаз и графит и кроме того известен в аморфном состоянии в виде т. н. аморфного угля . Индивидуальность последнего в результате недавних исследований оспаривалась: уголь отождествляли с графитом, рассматривая тот и другой как морфологические разновидности одной формы - «черного углерода», а разницу в их свойствах объясняли физической структурой и степенью дисперсности вещества. Однако в самое последнее время получены факты, подтверждающие существование угля как особой аллотропной формы (см. ниже).

Природные источники и запасы углерода . По распространенности в природе углерод занимает среди элементов 10-е место, составляя 0,013% атмосферы, 0,0025% гидросферы и около 0,35% всей массы земной коры. Большая часть углерода находится в форме кислородных соединений: в атмосферном воздухе содержится ~800 млрд. тонн углерода в виде двуокиси СО 2 ; в воде океанов и морей - до 50000 млрд. тонн углерода в виде СО 2 , иона угольной кислоты и бикарбонатов; в горных породах - нерастворимые карбонаты (кальция, магния и других металлов), причем на долю одного СаСО 3 приходится ~160·10 6 млрд. тонн углерода. Эти колоссальные запасы не представляют, однако, энергетической ценности; гораздо более ценными являются горючие углеродистые материалы - ископаемые угли, торф, затем нефть, углеводородные газы и другие природные битумы. Запас этих веществ в земной коре также довольно значителен: общая масса углерода в ископаемых углях достигает ~6000 млрд. тонн, в нефти ~10 млрд. тонн и т. д. В свободном состоянии углерод встречается довольно редко (алмаз и часть вещества графитов). Ископаемые угли почти или вовсе не содержат свободного углерода: они состоят гл. обр. из высокомолекулярных (полициклических) и весьма устойчивых соединений углерода с другими элементами (Н, О, N, S) еще очень мало изученных. Углеродистые соединения живой природы (биосферы земного шара), синтезируемые в растительных и животных клетках, отличаются чрезвычайным разнообразием свойств и количеств состава; наиболее распространенные в растительном мире вещества - клетчатка и лигнин - играют роль и в качестве энергетических ресурсов.

Углерод сохраняет постоянство распределения в природе благодаря непрерывному круговороту, цикл которого слагается из синтеза сложных органических веществ в растительных и животных клетках и из обратной дезагрегации этих веществ при их окислительном распаде (горение, гниение, дыхание), приводящем к образованию СО 2 , которая вновь используется растениями для синтеза. Общая схема этого круговорота м. б. представлена в следующем виде:

Получение углерода . Углеродистые соединения растительного и животного происхождения неустойчивы при высоких температурах и, будучи подвергнуты нагреванию не ниже 150-400°С без доступа воздуха, разлагаются, выделяя воду и летучие соединения углерода и оставляя твердый нелетучий остаток, богатый углеродом и обычно называемый углем . Этот пиролитический процесс носит название обугливания , или сухой перегонки , и широко применяется в технике. Высокотемпературный пиролиз ископаемых углей, нефти и торфа (при температуре 450-1150°С) приводит к выделению углерода в графитообразной форме (кокс, ретортный уголь). Чем выше температура обугливания исходных материалов, тем получаемый уголь или кокс ближе по составу к свободному углероду, а по свойствам - к графиту.

Аморфный же уголь, образующийся при температуре ниже 800°С, не м. б. рассматриваем как свободный углерод, ибо содержит значительные количества химически связанных других элементов, гл. обр. водорода и кислорода. Из технических продуктов к аморфному углю наиболее близки по свойствам активированный уголь и сажа. Наиболее чистый уголь м. б. получен обугливанием чистого сахара или пиперонала, специальной обработкой газовой сажи и т. п. Искусственный графит, полученный электротермическим путем, по составу представляет собою почти чистый углерод. Природный графит всегда бывает загрязнен минеральными примесями и кроме того содержит некоторое количество связанных водорода (Н) и кислорода (О); в относительно чистом состоянии он м. б. получен лишь после ряда специальных обработок: механического обогащения, промывки, обработки окислителями и прокаливания при высокой температуре до полного удаления летучих веществ. В технологии углерода никогда не имеют дела с совершенно чистым углеродом; это относится не только к натуральному углеродному сырью, но и к продуктам его обогащения, облагораживания и термического разложения (пиролиза). Ниже приведено содержание углерода в некоторых углеродистых материалах (в %):

Физические свойства углерода . Свободный углерод практически совершенно неплавок, нелетуч и при обыкновенной температуре нерастворим ни в одном из известных растворителей. Он растворяется только в некоторых расплавленных металлах, особенно при температуре, приближающихся к температуре кипения последних: в железе (до 5%), серебре (до 6%)| рутении (до 4%), кобальте, никеле , золоте и платине. При отсутствии кислорода углерод является наиболее жароупорным материалом; жидкое состояние для чистого углерода неизвестно, а превращение его в пар начинается лишь при температуре выше 3000°С. Поэтому определение свойств углерода производилось исключительно для твердого агрегатного состояния. Из модификаций углерода алмаз обладает наиболее постоянными физическими свойствами; свойства графита в различных его образцах (даже наиболее чистых) значительно варьируют; еще более непостоянны свойства аморфного угля. Важнейшие физические константы различных модификаций углерода сопоставлены в таблице.

Алмаз - типичный диэлектрик, в то время как графит и уголь обладают металлической электропроводностью. По абсолютной величине проводимость их меняется в очень широких пределах, но для углей она всегда ниже, чем для графитов; у графитов же приближается к проводимости настоящих металлов. Теплоемкость всех модификаций углерода при температуре >1000°С стремится к постоянному значению 0,47. При температуре ниже -180°С теплоемкость алмаза становится исчезающе малой и при -27°С она практически делается равной нулю.

Химические свойства углерода . При нагревании выше 1000°С как алмаз, так и уголь постепенно превращаются в графит, который поэтому следует рассматривать как наиболее устойчивую (в условиях высоких температур) монотропную форму углерода. Превращение аморфного угля в графит начинается по-видимому около 800°С и заканчивается при 1100°С (в этой последней точке уголь теряет свою адсорбционную активность и способность к реактивации, а электропроводность его резко возрастает, оставаясь в дальнейшем почти постоянной). Для свободного углерода характерна инертность при обычных температурах и значительная активность - при высоких. Наиболее активен в химическом отношении аморфный уголь, в то время как алмаз обладает наибольшей резистентностью. Так, например, фтор реагирует с углем при температуре 15°С, с графитом же лишь при 500°С, а с алмазом при 700°С. При нагревании на воздухе пористый уголь начинает окисляться ниже 100°С, графит около 650°С, алмаз же выше 800°С. При температуре 300°С и выше уголь соединяется с серой в сероуглерод CS 2 . При температуре выше 1800°С углерод (уголь) начинает взаимодействовать с азотом, образуя (в незначительных количествах) дициан C 2 N 2 . Взаимодействие углерода с водородом начинается при 1200°С, причем в интервале температур 1200-1500°С образуется только метан СН 4 ; выше 1500°С - смесь метана, этилена (С 2 Н 4) и ацетилена (С 2 Н 2); при температуре порядка 3000°С получается почти исключительно ацетилен. При температуре электрической дуги углерод вступает в прямое соединение с металлами, кремнием и бором, образуя соответствующие карбиды. Прямыми или косвенными путями м. б. получены соединения углерода со всеми известными элементами, кроме газов нулевой группы. Углерод - элемент неметаллического характера, проявляющий некоторые признаки амфотерности. Атом углерода имеет диаметр 1,50 Ᾰ (1Ᾰ = 10 -8 см) и содержит во внешней сфере 4 валентных электрона, которые с равной легкостью отдаются либо дополняются до 8; поэтому нормальная валентность углерода как кислородная, так и водородная равна четырем. В подавляющем большинстве своих соединений углерод четырехвалентен; лишь в незначительном числе известны соединения двухвалентного углерода (окись углерода и ее ацетали, изонитрилы, гремучая кислота и ее соли) и трехвалентного (т. н. «свободный радикал»).

С кислородом углерод образует два нормальных окисла: двуокись углерода СО 2 кислотного характера и нейтральную окись углерода СО. Кроме того существует ряд недокисей углерода , содержащих более 1 атома С, не имеющих технического значения; из них наиболее известна недокись состава С 3 О 2 (газ с температурой кипения +7°С и температурой плавления -111°С). Первым продуктом горения углерода и его соединений является СО 2 , образующаяся по уравнению:

С+О 2 = СО 2 +97600 cal.

Образование СО при неполном сгорании топлива есть результат вторичного восстановительного процесса; восстановителем в этом случае служит сам углерод, который при температуре выше 450°С реагирует с СО 2 по уравнению:

СО 2 +С = 2СО -38800 cal;

реакция эта обратима; выше 950°С превращение СО 2 в СО делается практически полным, что и осуществляется в газогенераторных печах. Энергичная восстановительная способность углерода при высоких температурах используется также при получении водяного газа (Н 2 О+С = СО+Н 2 -28380 cal) и в металлургических процессах - для получения свободного металла из его окисла. К действию некоторых окислителей аллотропные формы углерода относятся различно: например, смесь KCIO 3 + HNO 3 на алмаз совершенно не действует, аморфный уголь окисляется ею сполна в СО 2 , графит же дает соединения ароматического ряда - графитовые кислоты с эмпирической формулой (С 2 ОН)х и далее меллитовую кислоту С 6 (СООН) 6 . Соединения углерода с водородом – углеводороды - крайне многочисленны; от них генетически производится большинство остальных органических соединений, в которые кроме углерода входят чаще всего Н, О, N, S и галоиды.

Исключительное многообразие органических соединений, которых известно до 2 млн., обусловлено некоторыми особенностями углерода как элемента. 1) Для углерода характерна прочность химической связи с большинством остальных элементов как металлического, так и неметаллического характера, благодаря чему он образует достаточно устойчивые соединения и с теми и с другими. Вступая в сочетание с другими элементами, углерод весьма мало склонен к образованию ионов. Большая часть органических соединений - гомеополярного типа и в обычных условиях не диссоциирует; разрыв внутримолекулярных связей в них нередко требует затраты значительного количества энергии. При суждении о прочности связей следует однако различать; а) прочность связи абсолютную, измеряемую термохимическим путем, и б) способность связи разрываться под действием различных реагентов; эти две характеристики далеко не всегда совпадают. 2) Атомы углерода с исключительной легкостью связываются друг с другом (неполярно), образуя углеродные цепи , открытые или замкнутые. Длина таких цепей по-видимому не подвержена никаким ограничениям; так, известны вполне устойчивые молекулы с открытыми цепями из 64 атомов углерода. Удлинение и усложнение открытых цепей не отражается на прочности связи их звеньев между собою или с другими элементами. Среди замкнутых цепей наиболее легко образуются 6- и 5-членные кольца, хотя известны кольчатые цепи, содержащие от 3 до 18 углеродных атомов. Способность атомов углерода к взаимному соединению хорошо объясняет особые свойства графита и механизм процессов обугливания; она делает понятным и тот факт, что углерод неизвестен в форме двухатомных молекул С 2 , чего можно было бы ожидать по аналогии с другими легкими неметаллическими элементами (в парообразной форме углерод состоит из одноатомных молекул). 3) Благодаря неполярному характеру связей очень многие соединения углерода обладают химической инертностью не только внешней (медленность реагирования), но и внутренней (затрудненность внутримолекулярных перегруппировок). Наличие больших «пассивных сопротивлений» сильно затрудняет самопроизвольное превращение неустойчивых форм в устойчивые, часто сводя скорость такого превращения к нулю. Результатом этого является возможность реализации большого числа изомерных форм, практически одинаково устойчивых при обыкновенной температуре.

Аллотропия и атомная структура углерода . Рентгенографический анализ дал возможность с достоверностью установить атомную структуру алмаза и графита. Этот же метод исследования пролил свет и на вопрос о существовании третьей аллотропной модификации углерода, являющийся по сути дела вопросом об аморфности или кристалличности угля: если уголь - аморфное образование, то он не м. б. отождествлен ни с графитом, ни с алмазом, а должен рассматриваться как особая форма углерода, как индивидуальное простое вещество. В алмазе атомы углерода размещены т. о., что каждый атом лежит в центре тетраэдра, вершинами которого являются 4 смежных атома; каждый из последних в свою очередь является центром другого такого же тетраэдра; расстояния между смежными атомами равны 1,54 Ᾰ (ребро элементарного куба кристаллической решетки равно 3,55 Ᾰ). Такая структура является наиболее компактной; ей соответствуют высокая твердость, плотность и химическая инертность алмаза (равномерное распределение валентных сил). Взаимная связь атомов углерода в решетке алмаза такая же, как и в молекулах большинства органических соединений жирного ряда (тетраэдрическая модель углерода). В кристаллах графита атомы углерода расположены плотными слоями, отстоящими один от другого на 3,35-3,41 Ᾰ; направление этих слоев совпадает с плоскостями спайности и плоскостями скольжения при механических деформациях. В плоскости каждого слоя атомы образуют сетку с шестиугольными ячейками (роты); сторона такого шестиугольника равна 1,42-1,45 Ᾰ. В смежных слоях шестиугольники не лежат один под другим: совпадение их по вертикали повторяется лишь через 2 слоя в третьем. Три связи каждого атома углерода лежат в одной плоскости, образуя углы в 120°; 4-я связь направлена попеременно в ту или другую сторону от плоскости к атомам соседних слоев. Расстояния между атомами в слое строго постоянны, расстояние же между отдельными слоями м. б. изменено внешними воздействиями: так, при прессовании под давлением до 5000 atm оно уменьшается до 2,9 Ᾰ, а при набухании графита в концентрированной HNO 3 - увеличивается до 8 Ᾰ. В плоскости одного слоя атомы углерода связаны гомеополярно (как в углеводородных цепях), связи же между атомами смежных слоев имеют скорее металлический характер; это видно из того, что электропроводность кристаллов графита в направлении, перпендикулярном к слоям, в ~100 раз превышает проводимость по направлению слоя. Т. о. графит обладает свойствами металла в одном направлении и свойствами неметалла - в другом. Расположение атомов углерода в каждом слое решетки графита совершенно такое же, как в молекулах сложноядерных ароматических соединений. Такая конфигурация хорошо объясняет резкую анизотропность графита, исключительно развитую спайность, антифрикционные свойства и образование ароматических соединений при его окислении. Аморфная модификация черного углерода, по-видимому, существует как самостоятельная форма (О. Руфф). Для нее наиболее вероятным является пенообразное ячеистое строение, лишенное всякой правильности; стенки таких ячеек образованы слоями активных атомов углерода толщиною примерно в 3 атома. На практике активная субстанция угля залегает обычно под оболочкой из тесно расположенных неактивных атомов углерода, ориентированных графитообразно, и пронизана включениями очень мелких графитовых кристаллитов. Определенной точки превращения уголь→графит вероятно не имеется: между обеими модификациями осуществляется непрерывный переход, на протяжении которого происходит перестроение беспорядочно скученной массы С-атомов аморфного угля в правильную кристаллическую решетку графита. В силу своего беспорядочного расположения атомы углерода в аморфном угле проявляют максимум остаточного сродства, что (согласно представлениям Лангмюира о тождественности адсорбционных сил с силами валентными) соответствует столь характерной для угля высокой адсорбционной и каталитической активности. Атомы углерода, ориентированные в кристаллическую решетку, затрачивают на взаимное сцепление все свое сродство (в алмазе) или большую часть его (в графите); этому соответствует понижение химической активности и активности адсорбционной. У алмаза адсорбция возможна лишь на поверхности монокристалла, у графита же остаточная валентность может проявляться на обеих поверхностях каждой плоской решетки (в «щелях» между слоями атомов), что и подтверждается фактом способности графита к набуханию в жидкостях (HNO 3) и механизмом его окисления в графитовую кислоту.

Техническое значение углерода . Что касается б. или м. свободного углерода, получаемого при процессах обугливания и коксования, то его применение в технике основывается как на химических (инертность, восстановительная способность), так и на физических его свойствах (жаростойкость, электропроводность, адсорбционная способность). Так, кокс и древесный уголь, помимо частичной прямой утилизации их в качестве беспламенного топлива, используются для получения газообразного горючего (генераторных газов); в металлургии черных и цветных металлов - для восстановления металлических окислов (Fe, Сu, Zn, Ni, Сг, Мn, W, Mo, Sn, As, Sb, Bi); в химической технологии - как восстановитель при получении сульфидов (Na, Са, Ва) из сульфатов, безводных хлористых солей (Mg, Аl), из окисей металлов, при производстве растворимого стекла и фосфора - как сырье для получения карбида кальция, карборунда и других карбидов сероуглерода и т. д.; в строительном деле - как термоизолирующий материал. Ретортный уголь и кокс служат материалом для электродов электрических печей, электролитических ванн и гальванических элементов, для изготовления дуговых углей, реостатов, коллекторных щеток, плавильных тиглей и т. п., а также в качестве насадки в химической аппаратуре башенного типа. Древесный уголь кроме указанных выше применений идет для получения концентрированной окиси углерода, цианистых солей, для цементации стали, широко используется как адсорбент, как катализатор для некоторых синтетических реакций, наконец входит в состав дымного пороха и других взрывчатых и пиротехнических составов.

Аналитическое определение углерода . Качественно углерод определяется обугливанием пробы вещества без доступа воздуха (что пригодно далеко не для всех веществ) или, что гораздо надежнее, исчерпывающим окислением его, например, прокаливанием в смеси с окисью меди, причем образование СО 2 доказывается обычными реакциями. Для количественного определения углерода навеска вещества подвергается сожжению в атмосфере кислорода; образующаяся СО 2 улавливается раствором щелочи и определяется весовым или объемным путем по обычным методам количественного анализа. Этот способ годен для определения углерода не только в органических соединениях и технических углях, но также и в металлах.

Рассмотрение особенностей строения атома углерода и его электронного состояния является основополагающим для правильного понимания теории химического строения. Рассмотрим сначала положение углерода в периодической системе (ПС). Для удобства характеристики элемента по ПС можно использовать следующий алгоритм:

    Порядковый номер элемента (№) определяет его заряд ядра (зарядное число Z ), а следовательно, количество протонов N$p^+$ (обозначение протона - $p_1^+$) и общее количество электронов N$\bar{e}$ (обозначение электрона - $\bar{e}$) в ядре. Для углерода порядковый номер равен 6, следовательно, ядро атома углерода состоит из 6 протонов и 6 электронов. Схематически это рассуждение можно записать следующим образом: №$ (C)=6 \Rightarrow Z = 6; \hspace{2pt}N\bar{e} = 6$.

    Атомная масса элемента, или массовое число изотопа (A) равно сумме масс протонов и нейтронов (обозначение нейтрона - $n_1^0$) в ядре, следовательно, по разности можно вычислить количество нейтронов N. Для углерода атомная масса равна 12 а.е.м., следовательно, количество нейтронов в атоме углерода равно 6. Схематическая запись: $A(C) =12 \textrm{а.е.м.} \Rightarrow N =A-Z=12-6=6$.

    Номер периода, в котором находится элемент в ПС, численно равен главному (радиальному) квантовому числу n и определяет число энергетических уровней в атоме. Иногда встречается другое обозначение главного квантового числа - $n_r$ (по Зоммерфельду). Углерод находится во втором периоде ПС, следовательно, имеет два энергетических уровня, главное квантовое число равно 2. Схематическая запись: № пер. = 2 => n = 2.

    Номер группы , в которой расположен элемент в ПС, соответствует числу электронов на внешнем энергетическом уровне. Углерод расположен в IV группе главной подгруппы, следовательно, на внешнем энергетическом уровне у него 4 электрона. Схематическая запись: № гр. = IV => N$\bar{e}_\textrm{валентных}$ = 4.

Подводя итог, можно сказать, что в основном (невозбужденном) состоянии на внешнем энергетическом уровне атома углерода находятся 4 валентных электрона, при этом s-электроны образуют электронную пару, и 2 р-электрона не спарены.

Для валентного электронного слоя атома углерода главное квантовое число n равно 2, орбитальное квантовое число l равно 0, что соответствует s-орбитали и равно 1 для р-орбиталей; магнитное квантовое число m = –l, 0, +l; то есть m = 0 (при l = 0) и m = –1, 0, 1 (при l = 1).

Определение

Атомной орбиталью (АО) называется графическое трехмерное изображение электронной плотности, то есть область пространства, в которой вероятность нахождения электрона максимальна.

В органических соединениях атом углерода всегда четырехвалентен, это значит, что в образовании химической связи участвуют все 4 валентных электрона. Но в образовании связи участвуют только неспаренные электроны! Чтобы объяснить несоответствие между понятием валентности и электронным строением атома углерода, следует применить модель возбужденного состояния атома углерода $C^*$ , допускающая переход электрона с 2s- на 2р-подуровень:

В этом случае энергия, затрачиваемая на переход электрона, компенсируется энергией, высвобождаемой при образовании двух дополнительных связей. Однако такая модель предполагает нахождение электрона на четырех «чистых» орбиталях - одной s и трех р.

Тогда в возбужденной состоянии атома энергия s-орбитали должна быть меньше энергии образования р-орбиталей. На самом деле это не совсем так. Как показывают исследования, энергия всех четырех образующихся в результате «перескока» электрона орбиталей примерно одинаковая, соответственно, и энергии образования связей в молекуле с одинаковыми гетероатомами (например, атомами водорода в метане) тоже примерно равны, причем энергия каждой из вновь образующихся орбиталей больше, чем энергия «чистой» s-орбитали, но меньше, чем энергия «чистой» р-орбитали.

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

Одним из самых удивительных элементов, который способен формировать огромное количество разнообразных соединений органической и неорганической природы, является углерод. Это настолько необычный по свойствам элемент, что еще Менделеев предрекал ему большое будущее, говоря о не раскрытых пока особенностях.

Позже это подтвердилось практически. Стало известно, что он - главный биогенный элемент нашей планеты, входящий в состав абсолютно всех живых существ. Помимо этого, способный существовать в таких формах, которые кардинально различаются по всем параметрам, но при этом состоят только лишь из атомов углерода.

В общем, особенностей у этой структуры много, именно с ними и постараемся разобраться в ходе статьи.

Углерод: формула и положение в системе элементов

В периодической системе элемент углерод располагается в IV (по новому образцу в 14) группе, главной подгруппе. Его порядковый номер 6, а атомный вес 12,011. Обозначение элемента знаком С говорит о его названии на латыни - carboneum. Есть несколько различных форм, в которых существует углерод. Формула его поэтому бывает различна и зависит от конкретной модификации.

Однако для написания уравнений реакций обозначение конкретное, конечно, есть. В целом, когда говорится о веществе в чистом виде, принята молекулярная формула углерода С, без индексации.

История открытия элемента

Сам по себе этот элемент известен с самой древности. Ведь один из главнейших минералов в природе - это каменный уголь. Поэтому для древних греков, римлян и других народностей секретом он не был.

Помимо этой разновидности, также использовали алмазы и графит. С последним долгое время было много запутанных ситуаций, так как часто без анализа состава за графит принимали такие соединения, как:

  • серебристый свинец;
  • карбид железа;
  • сульфид молибдена.

Все они были окрашены в черный цвет и поэтому считались графитом. Позже это недоразумение было разъяснено, и данная форма углерода стала сама собой.

С 1725 года большое коммерческое значение приобретают алмазы, а в 1970 освоена технология получения их искусственным путем. С 1779 года, благодаря работам Карла Шееле, изучаются химические свойства, которые проявляет углерод. Это послужило началом ряда важнейших открытий в области данного элемента и стало основой для выяснения всех его уникальнейших особенностей.

Изотопы углерода и распространение в природе

Несмотря на то что рассматриваемый элемент - один из важнейших биогенных, его общее содержание в массе земной коры составляет 0,15 %. Так происходит от того, что он подвергается постоянной циркуляции, естественному круговороту в природе.

В целом можно назвать несколько соединений минерального характера, в состав которых входит углерод. Это такие природные породы, как:

  • доломиты и известняки;
  • антрацит;
  • горючие сланцы;
  • природный газ;
  • каменный уголь;
  • нефть;
  • бурый уголь;
  • торф;
  • битумы.

Помимо этого, не следует забывать и о живых существах, которые являются просто хранилищем углеродных соединений. Ведь им образованы белки, жиры, углеводы, нуклеиновые кислоты, а значит самые жизненно важные структурные молекулы. В целом на пересчет сухой массы тела из 70 кг 15 приходится на чистый элемент. И так у каждого человека, не говоря уже о животных, растениях и прочих существах.

Если же рассмотреть и воды, то есть гидросферу в целом и атмосферу, то здесь присутствует смесь углерод-кислород, выражаемая формулой СО 2 . Диоксид или углекислый газ - один из основных газов, составляющих воздух. Именно в таком виде массовая доля углерода составляет 0,046%. Еще больше растворено углекислого газа в водах Мирового океана.

Атомная масса углерода как элемента составляет 12,011. Известно, что данная величина рассчитывается как среднее арифметическое между атомными весами всех существующих в природе изотопных разновидностей, с учетом их распространенности (в процентном соотношении). Так происходит и у рассматриваемого вещества. Есть три главных изотопа, в виде которых находится углерод. Это:

  • 12 С - его массовая доля в подавляющем большинстве составляет 98,93 %;
  • 13 С - 1,07 %;
  • 14 С - радиоактивный, период полураспада 5700 лет, устойчивый бетта-излучатель.

В практике определения геохронологического возраста образцов широко применяется радиоактивный изотоп 14 С, который является индикатором, благодаря своему длительному периоду распада.

Аллотропные модификации элемента

Углерод - это такой элемент, который в виде простого вещества существует в нескольких формах. То есть он способен формировать самое большое из известных на сегодня число аллотропных модификаций.

1. Кристаллические вариации - существуют в виде прочных структур с правильными решетками атомного типа. К данной группе относятся такие разновидности, как:

  • алмазы;
  • фуллерены;
  • графиты;
  • карбины;
  • лонсдейлиты;
  • и трубки.

Все они различаются решетки, в узлах которых - атом углерода. Отсюда и совершенно уникальные, не схожие свойства, как физические, так и химические.

2. Аморфные формы - их образует атом углерода, входящий в состав некоторых природных соединений. То есть это не чистые разновидности, а с примесями других элементов в незначительном количестве. В данную группу входят:

  • активированный уголь;
  • каменный и древесный;
  • сажа;
  • углеродная нанопена;
  • антрацит;
  • стеклоуглерод;
  • техническая разновидность вещества.

Их также объединяют особенности строения кристаллической решетки, объясняющие и проявляемые свойства.

3. Соединения углерода в виде кластеров. Такая структура, при которой атомы замыкаются в особую полую изнутри конформацию, заполняемую водой или ядрами других элементов. Примеры:

  • углеродные наноконусы;
  • астралены;
  • диуглерод.

Физические свойства аморфного углерода

Из-за большого разнообразия аллотропных модификаций, выделить какие-то общие физические свойства для углерода сложно. Проще говорить о конкретной форме. Так, например, аморфный углерод обладает следующими характеристиками.

  1. В основе всех форм - мелкокристаллические разновидности графита.
  2. Высокая теплоемкость.
  3. Хорошие проводниковые свойства.
  4. Плотность углерода около 2 г/см 3 .
  5. При нагревании свыше 1600 0 С происходит переход в графитовые формы.

Сажа, и каменные разновидности находят широкое применение в технических целях. Они не являются проявлением модификации углерода в чистом виде, однако содержат его в очень большом количестве.

Кристаллический углерод

Существует несколько вариантов, в которых углерод - вещество, формирующее правильные кристаллы различного вида, где атомы соединяются последовательно. В результате происходит образование следующих модификаций.

  1. - кубическая, в которой соединяются четыре тетраэдра. В результате все ковалентные химические связи каждого атома максимально насыщенны и прочны. Это объясняет физические свойства: плотность углерода 3300 кг/м 3 . Высокая твердость, низкая теплоемкость, отсутствие электрической проводимости - все это является результатом строения кристаллической решетки. Существуют технически полученные алмазы. Образуются при переходе графита в следующую модификацию под влиянием высокой температуры и определенного давления. В целом так же высока, как и прочность - около 3500 0 С.
  2. Графит. Атомы расположены подобно структуре предыдущего вещества, однако происходит насыщение только трех связей, а четвертая становится более длинной и менее прочной, она соединяет между собой "слои" гексагональных колец решетки. В результате получается, что графит - мягкое, жирное на ощупь вещество черного цвета. Обладает хорошей электрической проводимостью и имеет высокую температуру плавления - 3525 0 С. Способно к сублимации - возгонке из твердого состояния в газообразное, минуя жидкое (при температуре 3700 0 С). Плотность углерода - 2,26 г/см 3, что гораздо ниже таковой у алмаза. Это объясняет их различные свойства. Из-за слоистой структуры кристаллической решетки, возможно использование графита для изготовления грифелей простых карандашей. При проведении по бумаге чешуйки отслаиваются и оставляют на бумаге след черного цвета.
  3. Фуллерены. Открыты были лишь в 80-х годах прошлого столетия. Представляют собой модификации, в которых углероды соединяются между собой в особую выпуклую замкнутую структуру, имеющую в центре пустоту. Причем форма кристалла - многогранник, правильной организации. Количество атомов четное. Самая известная форма фуллерен С 60 . Образцы подобного вещества были найдены при исследованиях:
  • метеоритов;
  • донных отложений;
  • фольгуритов;
  • шунгитов;
  • космического пространства, где содержались в виде газов.

Все разновидности кристаллического углерода имеют важное практическое значение, поскольку обладают рядом полезных в технике свойств.

Химическая активность

Молекулярный углерод проявляет низкую химическую активность вследствие своей устойчивой конфигурации. Заставить его вступать в реакции можно лишь сообщив атому дополнительную энергию и заставив электроны внешнего уровня распариться. В этот момент валентность становится равна 4. Поэтому в соединениях он имеет степень окисления + 2, + 4, - 4.

Практически все реакции с простыми веществами, как металлами, так и неметаллами, протекают под влиянием высоких температур. Рассматриваемый элемент может быть как окислителем, так и восстановителем. Однако последние свойства выражены у него особенно сильно, именно на этом основано применение его в металлургической и других отраслях промышленности.

В целом способность вступать в химическое взаимодействие зависит от трех факторов:

  • дисперсности углерода;
  • аллотропной модификации;
  • температуры реакции.

Таким образом, в ряде случаев происходит взаимодействие со следующими веществами:

  • неметаллами (водородом, кислородом);
  • металлами (алюминием, железом, кальцием и прочими);
  • оксидами металлов и их солями.

С кислотами и щелочами не реагирует, с галогенами очень редко. Важнейшее из свойств углерода - способность образовывать длинные цепи между собой. Они могут замыкаться в цикл, формировать разветвления. Так происходит образование органических соединений, которые на сегодняшний день исчисляются миллионами. Основа этих соединений два элемента - углерод, водород. Также в состав могут входить и другие атомы: кислород, азот, сера, галогены, фосфор, металлы и прочие.

Основные соединения и их характеристика

Существует множество различных соединений, в состав которых входит углерод. Формула самого известного из них - СО 2 - углекислый газ. Однако помимо этого оксида, существует еще СО - монооксид или угарный газ, а также недооксид С 3 О 2 .

Среди солей, в состав которых входит данный элемент, самыми распространенными являются карбонаты кальция и магния. Так, карбонат кальция имеет несколько синонимов в названии, так как в природе встречается в виде:

  • мела;
  • мрамора;
  • известняка;
  • доломита.

Важное значение карбонатов щелочноземельных металлов проявляется в том, что они активные участники процессов образования сталактитов и сталагмитов, а также подземных вод.

Угольная кислота - еще одно соединение, которое образует углерод. Формула ее - Н 2 СО 3 . Однако в обычном виде она крайне неустойчива и сразу же в растворе распадается на углекислый газ и воду. Поэтому известны лишь ее соли, а не она сама, как раствор.

Галогениды углерода - получаются в основном косвенным путем, так как прямые синтезы идут лишь при очень высоких температурах и с низким выходом продукта. Одно из самых распространенных - CCL 4 - тетрахлорметан. Ядовитое соединение, способное при вдыхании вызвать отравление. Получают при реакциях радикального фотохимического замещения в метане.

Карбиды металлов - соединения углерода, в которых он проявляет степень окисления 4. Также возможно существование объединений с бором и кремнием. Главное свойство карбидов некоторых металлов (алюминия, вольфрама, титана, ниобия, тантала, гафния) - это высокая прочность и отличная электропроводность. Карбид бора В 4 С - одно из самых твердых веществ после алмаза (9,5 по Моосу). Данные соединения используются в технике, а также химической промышленности, как источники получения углеводородов (карбид кальция с водой приводит к образованию ацетилена и гидроксида кальция).

Многие сплавы металлов изготавливают с использованием углерода, значительно повышая тем самым их качественные и технические характеристики (сталь - сплав железа с углеродом).

Отдельного внимания заслуживают многочисленные органические соединения углерода, в которых он - основополагающий элемент, способный соединяться с такими же атомами в длинные цепи различного строения. К ним можно отнести:

  • алканы;
  • алкены;
  • арены;
  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • спирты;
  • карбоновые кислоты и многие другие классы веществ.

Применение углерода

Значение соединений углерода и его аллотропных модификаций в жизни человека очень велико. Можно назвать несколько самых глобальных отраслей, чтобы стало понятно, что это действительно так.

  1. Данный элемент образует все виды органического топлива, из которого человек получает энергию.
  2. Металлургическая промышленность использует углерод как сильнейший восстановитель для получения металлов из их соединений. Здесь же находят широкое применение карбонаты.
  3. Строительство и химическая промышленность потребляют огромное количество соединений углерода для синтеза новых веществ и получения необходимых продуктов.

Также можно назвать такие отрасли хозяйства, как:

  • ядерная промышленность;
  • ювелирное дело;
  • техническое оборудование (смазки, жаропрочные тигли, карандаши и прочее);
  • определение геологического возраста пород - радиоактивный индикатор 14 С;
  • углерод - прекрасный адсорбент, что позволяет использовать его для изготовления фильтров.

Круговорот в природе

Масса углерода, находящегося в природе, включена в постоянный круговорот, который циклически совершается ежесекундно по всему земному шару. Так, атмосферный источник углерода - СО 2 , поглощается растениями и выделяется всеми живыми существами в процессе дыхания. Попадая в атмосферу, он снова поглощается, и так цикл не прекращается. При этом отмирание органических остатков приводит к высвобождению углерода и накоплению его в земле, откуда затем он снова поглощается живыми организмами и выводится в атмосферу в виде газа.

Кратко рассказать о том, что такое углерод, невозможно. Ведь он - основа жизни. Данный элемент имеется во всех органических соединениях, и только он может формировать молекулы ДНК из миллионов атомов. Его свойства многочисленны, так что о нем стоит рассказать поподробней.

Формула, обозначения, особенности

Данный элемент, находящийся в таблице под порядковым номером шесть, обозначается символом «С». Электронная структурная формула углерода выглядит следующим образом: 1s 2 2s 2 2p 2 . Его масса - 12,0107 а.е.м. У этого вещества имеется:

  • Два неспаренных электрона в основном состоянии. Проявляет валентность II.
  • Четыре неспаренных электрона в возбужденном состоянии. Проявляет валентность IV.

Следует отметить, что определенная масса углерода содержится в земной коре. 0,023%, если быть точнее. Главным образом он накапливается в верхней части, в биосфере. Большая часть массы углерода литосферы накапливается в доломитах и известняках, в виде карбонатов.

Физические характеристики

Итак, что такое углерод? Это вещество, которое существует в огромном множестве аллотропных модификаций, и их физические свойства перечислять можно долго. А разнообразие веществ обуславливается способностью углерода к образованию химических связей отличающихся типов.

Что касательно свойств углерода, как простого вещества? Их можно обобщить следующим образом:

  • При нормальных условиях плотность составляет 2,25 г/см³.
  • Температура кипения равна 3506,85 °C.
  • Молярная теплоемкость - 8,54 Дж/(K.моль).
  • Критическая температура фазового перехода (когда газ не конденсируется ни при каком давлении) - 4130 К, 12 МПа.
  • Молярный объем 5,3 см³/моль.

Также стоит перечислить углеродные модификации.

Из кристаллических веществ самыми известными являются: алмаз, карбин, графит, наноалмаз, фуллерит, лонсдейлит, фуллерен, а также углеродные волокна.

К аморфным образованиям относится: древесный, ископаемый и активированный уголь, антрацит, кокс, стеклоуглерод, сажа, техуглерод и нанопена.

Но ничто из перечисленного не является чистой аллотропной формой обсуждаемого вещества. Это лишь химические соединения, в которых углерод содержится в высокой концентрации.

Структура

Интересно, что электронные орбитали атома углерода не одинаковы. Они имеют разную геометрию. Все зависит от степени гибридизации. Есть три наиболее часто встречающиеся геометрии:

  • Тетраэдрическая . Она образуется, когда происходит смешение трех р- и одного s-электронов. Такая геометрия атома углерода наблюдается у лонсдейлита и алмаза. Аналогичную структуру имеет метан и прочие углеводороды.
  • Тригональная . Данную геометрию образует смешение двух р- и одной s-электронной орбитали. Еще один р-элемент не принимает участия в гибридизации, но он задействован при образовании π-связи с прочими атомами. Эта структура свойственна фенолу, графиту и прочим модификациям.
  • Дигональная . Эта структура образуется вследствие смешения s- и р-электронов (по одному). Интересно, что выглядят электронные облака, как несимметричные гантели. Вытянуты они вдоль оного направления. Еще два р-электрона образуют пресловутые π-связи. Данная геометрия характерна для карбина.

Не так давно, в 2010 году, ученые из университета, который находится в Ноттингеме, открыли соединение, в котором сразу четыре атома оказались в одной плоскости. Его название - мономерный дилитио метандий.

Молекулы

О них стоит сказать в отдельности. Атомы обсуждаемого вещества могут соединяться, вследствие чего образуются сложные молекулы углерода. От насыщенных Na, С 2 и Н 2 , между которыми слишком слабое притяжение, их отличает склонность конденсироваться в твердое состояние. Молекулы углерода могут оставаться в газообразном состоянии, только если поддерживать высокую температуру. Иначе вещество мгновенно затвердеет.

Некоторое время тому назад в США, в Берклеевской национальной лаборатории, была синтезирована новая форма твердого углерода. Это - С36. И его молекулу образует 36 углеродных атомов. Вещество образуется вместе с фуллеренами С60. Происходит это между двумя электродами графита, в условиях пламени дугового разряда. Ученые предполагают, что молекулы нового вещества обладают интересными химико-электрическими свойствами, которые пока не изучены.

Графит

Теперь можно более подробно рассказать о самых известных модификациях такого вещества, как углерод.

Графит - это самородный минерал со слоистой структурой. Вот его особенности:

  • Он отлично проводит ток.
  • Является относительно мягким веществом из-за своей низкой твердости.
  • При нагревании в отсутствие воздуха проявляет устойчивость.
  • Не плавится.
  • На ощупь жирный, скользкий.
  • В природном графите содержится 10-12% примесей. Как правило, это окислы железа и глины.

Если говорить о химических свойствах, то стоит отметить, что с солями и щелочными металлами это вещество образует так называемые соединения включения. Еще графит при высокой температуре реагирует с кислородом, сгорая до углекислого газа. Но вот контакт с неокисляющими кислотами никакого результата за собой не влечет - это вещество в них просто не растворяется.

Применяют графит в самых разных сферах. Его используют при изготовлении футеровочных плит и плавильных тиглей, в производстве нагревательных элементов и электродов. Без участия графита невозможно получить синтетические алмазы. Также он играет роль замедлителя нейтронов в ядерных реакторах. И, конечно же, из него делают стержни для карандашей, мешая с каолином. И это лишь часть сфер, где он используется.

Алмаз

Это метастабильный минерал, который может существовать неограниченное количество времени, что в некоторой степени обусловлено прочностью и плотностью углерода. Алмаз является самым твердым веществом по шкале Мооса, он легко разрезает стекло.

У него высокая теплопроводность, дисперсия, показатель преломления. Он износостойкий, а чтобы заставить его плавиться, нужна температура в 4000 °C и давление около 11 ГПа. Его особенность - люминесценция, способность светиться разными цветами.

Это редкое, хоть и распространенное вещество. Возраст минералов, согласно данным определенных исследований, может колебаться от 100 миллионов до 2,5 миллиарда лет. Обнаружены алмазы внеземного происхождения, возможно, даже досолнечного.

Этот минерал нашел свое применение в ювелирном деле. Ограненный алмаз, именуемый бриллиантом, стоит дорого, но статус драгоценности и красота сделали его еще более популярным. Кстати, также это вещество используют при изготовлении резцов, сверл, ножей и т. д. Благодаря своей исключительной твердости, минерал применяют во многих производствах.

Карбин

В продолжение темы о том, что такое углерод, нужно пару слов сказать и о такой его модификации, как карбин. Он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами. Получен искусственным образом в начале 60-х годов советскими учеными.

Особенность данного вещества заключается в увеличивающейся под световым воздействием проводимости. Именно поэтому его стали применять в фотоэлементах.

Графен

Это первый в мире двумерный кристалл. У данной модификации большая механическая жесткость, чем у графита, и рекордно высокая теплопроводность, составляющая ~5.10 3 Вт.м −1 .К−. У носителей заряда графена высокая подвижность, именно поэтому вещество имеет перспективы в плане его использования в разных приложениях. Считается, что он может стать будущей основой наноэлектроники и даже заменить кремний в интегральных микросхемах.

Графен получают искусственно, в научных лабораториях. Для этого приходится прибегать к механическому отщеплению графитовых слоев от высокоориентированного вещества. Так получают образцы высокого качества с необходимой подвижностью носителей.

Его свойства изучены не полностью, но кое-что интересное ученые уже успели отметить. Например, в графене нет вингеровской кристаллизации. А в двойном слое вещества поведение электронов напоминает то, которое свойственно жидким кристаллам. Если соблюсти параметры скалывания на кристалле, удастся получить графеновую коробчатую наноструктуру.

Токсичность

Эту тему стоит отметить в заключение рассказа о том, что такое углерод. Дело в том, что это вещество выделяется в атмосферу вместе с выхлопными газами автомобилей. А еще при сжигании угля, подземной газификации и во многих других процессах.

Повышенное содержание этого вещества в воздухе приводит к увеличению численности заболеваний. В частности, это касается легких и верхних дыхательных путей. А токсическое действие обусловлено взаимодействием радиационного характера с β-частицами, которое ведет к тому, что химический состав молекулы меняется и свойства вещества - тоже.



Loading...Loading...