Пускатель для плавного включения водомета джилекс. Устройство плавного пуска электродвигателя

  • Устройства защиты насоса с плавным пуском
  • Электронные блоки управления и защиты насосов
  • Безыскровые реле давления воды
  • Реле давления для полива
  • Реле контроля уровня
  • Реле защиты по давлению
  • Стабилизаторы давления воды
  • Устройство плавного пуска электроинструмента (УПП-И)
  • Погружные насосы с плавным пуском и защитой от сухого хода
  • Фитинги и комплектующие
  • Есть множество причин для включения бытовых насосов через устройство плавного пуска.

    Обычно погружной или поверхностный насос подключают через электромеханическое или электронное реле, блок автоматики или магнитный пускатель. Во всех перечисленных случаях сетевое напряжение подаётся на насос путем замыкания контактов, то есть через прямое подключение. Это означает, что на обмотки статора электродвигателя мы подаём полное сетевое напряжение, а ротор в это время ещё не вращается. Это приводит к появлению мгновенного мощного вращательного момента на роторе электродвигателя насоса.

    Такая схема подключения характеризуется следующими явлениями при запуске насоса:

      Скачки тока через статор (соответственно, и через подводящие провода), так как ротор короткозамкнутый.
      В упрощённом понимании мы имеем короткое замыкание на вторичной обмотке трансформатора. По нашему опыту, в зависимости от насоса, производителя и нагрузки на валу, импульсный пусковой ток может превышать рабочий ток от 4 до 8, а на отдельных экземплярах и до 12 раз.

      Резкое появление вращающего момента на валу.
      Это оказывает негативное воздействие на пусковую и рабочую обмотки статора, подшипники, керамические и резиновые уплотнители, существенно увеличивая их износ и уменьшая ресурс службы.

      Появление резкого вращающего момента на валу приводит к резкому повороту корпуса скважинного насоса относительно трубопроводной системы.
      Мы неоднократно бывали свидетелями того, как из-за этого скважинный насос отсоединялся от трубопроводов и падал в скважину. В случае насосной станции на базе поверхностного насоса, установленного на платформу гидроаккумулятора, это приводит к разбалтыванию крепёжных гаек и разрушению сварных точек и швов гидроаккумулятора. Также при прямом включении насоса сокращается срок службы водопроводной и запорной арматуры, особенно в местах их соединения.

      Принято считать, что гидроаккумулятор убирает гидроудары в системе водоснабжения.
      Это действительно так, но гидроудары исчезают в трубопроводах только начиная от места подключения гидроаккумулятора. В промежутке между насосом и гидроаккумулятором при прямом подключении насоса гидроудар остаётся. В итоге на промежутке от насоса до гидроаккумулятора мы имеем все последствия гидроудара на все части насоса и на трубопроводную систему.

      В системах фильтрации воды гидроудары, возникающие при прямом подключении насоса, значительно сокращают срок службы фильтрующих элементов.

      Если локальная электросеть слабая , то о запуске насоса мощностью более 1кВт при прямом подключении узнают и Ваши соседи по резкому спаду напряжения в сети в момент включения насоса.
      Если локальная сеть КРАЙНЕ СЛАБА , и Ваш сосед тоже получает удовольствие от жизни, подключив к сети все доступные электрические приборы, то скважинный насос, погружённый на большую глубину, может и не запуститься. Такой скачок напряжения может вывести из строя электронные приборы, подключённые в сеть. Известны случаи, когда при запуске насоса выходил из строя напичканный электроникой дорогостоящий холодильник.

      Чем чаще включается насос, тем меньше его ресурс службы.
      Частые запуски через прямое подключение приводят к выходу из строя пластмассовых муфт скважинных насосов, соединяющих электродвигатель с насосной частью.

    Мы с Вами прошлись по проблемам, которые возникают при запуске насоса без устройства плавного пуска (УПП) .

    Необходимо отметить, что и при выключении насоса без УПП с прямой схемой подключенияесть негативные моменты:

      При выключении насоса также происходит гидроудар в системе, но теперь уже по причине резкого снижения вращающего момента на валу насоса, что равносильно созданию мгновенного разряжения.

      Резкое снижение вращающего момента на валу насоса также приводит к повороту корпуса насоса, но в противоположную сторону.
      Вспомним о трубопроводах и резьбовых соединениях насоса.

      В обычных бытовых насосах электродвигатели являются асинхронными и имеют явно выраженный индуктивный характер.
      Если мы резко прерываем подачу тока через индуктивную нагрузку, то происходит резкий скачок напряжения на этой нагрузке по причине непрерывности тока. Да, мы размыкаем контакт, и всё высокое напряжение должно остаться на стороне насоса. Но при любом механическом размыкании контакта присутствует так называемый «дребезг контактов», и импульсы высокого напряжения попадают в сеть, а значит попадают и в приборы, подключенные в это время к сети.

    Таким образом, при прямом подключении насоса происходит повышенный износ механических и электрических частей насоса (как при запуске, так и при отключении). Также страдают приборы, включенную в эту же сеть, и уменьшается ресурс работы систем фильтрации и водопроводной арматуры.

    Использование устройства плавного пуска («Акваконтроль УПП-2,2С») позволяет сгладить большинство описанных выше недостатков. В устройстве УПП-2,2С реализована специально рассчитанная кривая нарастания напряжения на насосе, позволяющая с одной стороны гарантированно запустить насос в самых неблагоприятных условиях эксплуатации, а с другой стороны плавно увеличить частоту вращения вала. Также в этот прибор встроена защита от низкого и высокого напряжения сети, чтобы оградить насос от экстремальных режимов работы и включения.

    В УПП-2,2С используется фазное симисторное управление. В момент пуска на насос подается часть сетевого напряжения, которое создает вращающий момент, достаточный для гарантированного запуска насоса. По мере раскрутки ротора плавно увеличивается напряжение на насосе до момента полной подачи напряжения. После этого включается реле и отключается симистор. В итоге, при использовании УПП-2,2С насос подключён к сети через контакты реле, то есть так же, как и при прямом подключении. Но в течение 3,2 секунд (это время плавного пуска) напряжение на насос подаётся через симистор, что обеспечивает «мягкий пуск», без искр на контактах реле.

    При таком запуске максимальный пусковой ток превышает рабочий не более чем в 2,0-2,5 раза вместо 5-8 раз. Используя УПП-2,2С , мы в 2,5-3 раза уменьшаем пусковые нагрузки на насос и во столько же раз продлеваем жизнь насосу, обеспечиваем более комфортную работу приборов, подключённых к электрической сети. УПП-2,2С можно назвать устройством с ресурсосберегающей технологией.

    Организация: ГК «АСУ-Технология»


    Задача повышения давления в насоных установках для повышения давления решается использованием двух основных координат управления: каскадного пуска и останова дополнительных насосов, а также частотного регулирования одним или несколькими насосами. Пуск и останов дополнительных насосов обеспечивает поддержание давления напорной магистрали в заданных пределах, частотное регулирование обеспечивает поддержание давления на заданном уровне.

    Следует отметить, что останов каждого насоса, не управляемого преобразователем частоты или устройством плавного пуска, производится прямым отключением его от сети питающего напряжения или в режиме «самовыбега». Такое отключение, как правило, не приводит к броскам тока в сетях питающих напряжений и заметным гидроударам. Однако с увеличением статического напора прямые отключения насосов могут вызвать гидроудары, определяемые соотношением Нст/Нф соответственно статического и фиктивного напора установки.

    Пуск дополнительных насосов в таком оборудованиии определяет переходные процессы в электрических сетях питающего напряжения, а также в напорных гидравлических магистралях.

    Пуск каждого дополнительного насоса может быть произведен следующими способами:

    1. Прямой пуск;
    2. Пуск по схеме «звезда - треугольник»;
    3. Пуск от устройства плавного пуска (УПП);
    4. Пуск от преобразователя частоты (ПЧ).

    Рассмотрим каждый из этих способов пуска.

    1. Прямой пуск насоса

    Производится непосредственным включением электродвигателя насоса в сеть питающего напряжения. Преимущества данного способа пуска: низкие аппаратные затраты, высокая надежность. Основные недостатки:

    • в момент подключения двигателя к сети при нулевой скорости вращении и, соответственно, скольжении S=1 в обмотке статора возникает ток короткого замыкания I1кз, в 5…7 раз превышающий номинальный ток двигателя (рис.4) ;
    • наличие гидроударов в напорной магистрали.

    Снижение гидроударов в напорной магистрали может быть реализовано пуском насоса на закрытую задвижку с последующим постепенным ее открытием, однако в этом случае возрастают аппаратные затраты на задвижку, редуктор которой должен иметь сервис – фактор не менее 1,8 , что приводит к удорожанию системы управления насосной станцией.

    Осциллограмма значения активного тока Iа при прямом пуске насоса мощностью 11 кВт на закрытую задвижку приведена на рис.1


    Осциллограмма (рис. 1) показывает, что импульсы тока в сети питающего напряжения электродвигателя насоса при его прямом пуске даже на закрытую задвижку достигают примерно значения 6,7 номинального тока электродвигателя Iном и составляют не менее 147 А для насоса мощностью Р=11 кВт. При этом длительность импульсов составляет 0,004 секунды.

    Осциллограмма изменения давления за насосом при его пуске на закрытую задвижку приведена на рис. 2. Изменение напора в течение короткого промежутка времени - гидроудар при пуске насоса определяется следующими параметрами: повышение напора на 20 метров в течение 0,06 секунды.


    Прямой пуск дополнительного насоса в ряде случаев производится при наличии параллельно работающего насоса с частотным регулированием. Основными показателями динамики частотного регулирования насоса являются время рампового пуска, в течение которого производится плавный разгон насоса от нулевой до максимальной скорости вращения, а также время рампового останова, в течение которого производится плавный останов насоса от максимальной скорости вращения. Как показывает опыт эксплуатации насосных установок, самая «короткая» рампа, характеризуемая наиболее крутой характеристикой изменения частоты питающего напряжения насоса при его пуске и останове, может быть определена значением не более 10 Гц/с.

    В течение времени гидроудара Δt ≤0,06 c преобразователь частоты сможет снизить частоту питающего напряжения на величину не более 0,6 Гц. С учетом наличия схемы фильтрации сигналов датчиков, а также времени реакции схемы ПИД - регулирования, обеспечивающих устойчивость переходных процессов, изменение частоты вращения регулируемого насоса в сторону его уменьшения может быть реализовано только через 0,8…1,2 секунды после возникновения гидроудара.

    Таким образом, наличие регулируемого преобразователем частоты насоса не позволяет демпфировать гидроудары, возникающие при прямом пуске дополнительного насоса.

    2. Пуск насоса по схеме «звезда – треугольник»

    Преимуществом данного способа является возможность безударного пуска насоса из-за снижения пускового момента при понижении питающего напряжения обмоток статора двигателя.

    Очевидным недостатком данного способа является увеличения количества коммутационной аппаратуры (рис 3). Пуск с переключением обмоток двигателя может быть реализован только для насосов с фазной обмоткой, рассчитанной на 0,4 кВ.


    Зависимости изменения вращающего момента на валу электродвигателя насоса М и потребляемого активного тока статора I1 от величины скольжения электродвигателя S представлены на рис 4.

    При пуске электродвигателя насоса его обмотки подключаются по схеме «звезда» (рис. 3). При этом фазное напряжение на статоре понижается в раз. Во столько же раз уменьшается и ток в фазных обмотках двигателя (рис. 4).

    Следует учитывать, что электромагнитный момент асинхронного двигателя пропорционален квадрату напряжения сети: . Таким образом, снижение питающего напряжения, подаваемого на рабочую обмотку, в раза с 380 до 220 В вызовет снижение вращающего момента в 3 раза (М0Δ = 3М0 звезда, рис.4), что, в свою очередь, приводит к увеличению скольжения. Поскольку работа электродвигателя при включении обмоток по схеме «звезда» происходит на неустойчивом участке механической характеристики М=М(S), определяемом значением скольжения Sкр

    В соответствие этому, частота вращения насоса при понижении питающего напряжения статорных обмоток ограничена условием выполнения равенства М сопротивления = М вращения.

    Вращение электродвигателя насоса в течение времени Тзвезда = t1 при включении по схеме «звезда» (4…6 секунд) с повышенным скольжением вызывает повышение тока статора (рис.4). Отсутствие схемы ограничения потребляемого тока может вызвать перегрев обмоток электродвигателя, а в ряде случаев - срабатывание электромагнитной или тепловой защиты при повышении момента сопротивления со стороны насоса

    Рис. 4. Графики зависимостей момента электропривода насоса и тока обмотки статора от величины скольжения при прямом пуске и пуске по схеме «звезда-треугольник»


    Ммакс – максимальное значение момента вращения, соответствующее скольжению Sкр > 0; Мном – номинальное значение момента вращения, соответствующее номинальному скольжению Sном; М0звезда, М0Δ – пусковой момент при включении обмоток электродвигателя насоса соответственно по схеме «звезда» и «треугольник»; I1звезда, I1Δ(I1кз) – значения пускового тока при включении обмоток электродвигателя насоса соответственно по схеме «звезда» и «треугольник» (ток короткого замыкания); I0 - значение тока статора при коммутации обмоток из схемы «звезда» в схему «треугольник» при Тпаузы=0;I1макс – максимальное значение тока статора при S1<0; Sзвезда /Δ – скольжение электродвигателя насоса в момент отключения питающего напряжения при работе по схеме «звезда»; -S0 – минимально возможное значение скольжения электродвигателя насоса после отключения обмоток по схеме «звезда»;
    0-t1 – время пуска по схеме «звезда»; t1-t2 – время полного останова насоса; t2-t3- время начала пуска насоса при включении обмоток по схеме «треугольник» после его полного останова; t3-t4 – время прямого пуска насоса по схеме «треугольник».

    После разгона насоса при включении обмоток электродвигателя по схеме «звезда» через время Тзвезда автоматика управления насосной станцией отключает его от сети питающего напряжения и через время Тпаузы - подключает к сети по схеме «треугольник». Время Тпаузы обеспечивает уменьшение размагничивающего тока ротора при «самовыбеге» насоса (S<0 – рис.4) и насыщение железа статора. При сокращении Тпаузы степень насыщения железа статора и, как следствие, индуктивное сопротивление его обмотки снижается, что приводит к значительным броскам тока в сети питающего напряжения при подключении двигателя по схеме «треугольник» .

    Состояние электродвигателя, определяемое значением скольжения S=0, является неустойчивым : при отключении обмоток от сети питающего напряжения он переходит из состояния S=0 в состояние S=1, минуя промежуточные состояния (рис. 4). Поскольку время останова нагруженного насоса при включении обмоток по схеме «звезда» tост =t2-t1 весьма мало, практически невозможно обеспечить условие его «безударного» пуска при переключении обмоток в течение t2<Тпаузы< t1 без разумных аппаратных затрат.

    В соответствие с этим, переключение обмоток при Sкр Пуск насоса с переключением обмоток эффективен лишь в том случае, когда его удается разогнать при включении обмоток по схеме «звезда» до значения Sзвезда≈Sном, и вывести на устойчивый участок механической характеристики с тем, чтобы пуск двигателя после переключения обмоток в схему «треугольник» происходил от значения SΔ

    Таким образом, пуск насоса с переключением обмоток электродвигателя из схемы «звезда» в схему «треугольник» является неэффективным средством снижения бросков тока в сети питающего напряжения и гидроударов в напорной магистрали.

    3. Пуск насосов от устройства плавного пуска

    Производится также с понижением питающего напряжения с последующим его увеличением до номинального значения, однако, в отличие от пуска по схеме «звезда-треугольник», ток статора электродвигателя ограничивается при этом значением (2..3) Iном.

    На рис. 5а приведена структура насосной станции с одним ПЧ и УПП для каждого насоса, на рис. 5б – с одним ПЧ и одним УПП для группы насосов. Преимуществом данного способа является обеспечение плавного пуска каждого насоса, что позволяет избежать гидроударов, а также бросков тока в сети питающего напряжения.

    Рис.5. Структурная схема пуска дополнительных насосов с использованием ПЧ и софтстартера


    Основные недостатки схемы рис. 5а:

    • аппаратная избыточность, повышающая стоимость насосной станции;
    • потеря функции частотного регулирования автоматики управления насосом при его отказе, работающего от ПЧ;
    • снижение показателей надежности за счет увеличения количества УПП;
    • невозможность резервирования отказа УПП;
    • невозможность реализации схемы автоматического чередования всех насосов для обеспечения равномерности выработки их ресурса.

    Cхемы рис. 5б:

    • увеличение элементов коммутации насосов, снижающее надежность системы управления;
    • отсутствие защиты ПЧ от замыкания его выходных ключей на сеть питающего напряжения, являющегося критичным условием отказа преобразователя.

    Общие недостатки схем 5а, 5б:

    • перегрев обмоток электродвигателей при пуске с повышенным скольжением из-за снижения момента вращения, а также из-за несинусоидальности питающего напряжения ;
    • ограничение количества пусков дополнительных насосов. Так, например, устройства плавного пуска мощностью более 4 кВт обеспечивают не более 20 пусков дополнительных насосов в час длительностью пуска 6…8 секунд из-за перегрева тиристорных ключей. Таким образом, схема 4а позволяет реализовать не более 30 пусков, схема 5б – не более 15 пусков дополнительных насосов в течение часа. При времени пуска первого дополнительного насоса 16…18 секунд, останова первого насоса 12…16 секунд количество пусков и остановов каждого дополнительного насоса может превышать 120 циклов в час при работе системы повышения давления в неустойчивых зонах характеристик .

    Плавный останов каждого насос от УПП еще более сократит количество циклов пуска каждого насоса в течение часа.

    Таким образом, применение УПП в схеме управления приводит к ухудшению точности поддержания давления в напорной магистрали, что, с одной стороны, приводит к потерям передавливания из-за повышения напора , с другой стороны - к нежелательному снижению напора в диктующих точках.

    4. Пуск каждого дополнительного насоса от преобразователя частоты

    Преимуществом данного способа является возможность плавного пуска каждого насоса, обеспечивающего отсутствие бросков тока в сетях питающего напряжения и гидроударов в напорных магистралях.

    При реализации данного способа пуска удается минимизировать аппаратные затраты в насосных станциях, обеспечить равномерную выработку ресурса всех насосов, а также функциональное резервирование преобразователя частоты при его отказе прямым пуском и остановом насосов по уровню давления в напорной магистрали.
    Структура системы коммутации насосов для схемы управления с одним ПЧ представлена на рис.6.


    Сложность реализации данного способа состоит в том, что пуск каждого дополнительного насоса от преобразователя частоты (ПЧ) для схем управления с количеством ПЧ меньше количества насосов возможен только после переключения регулируемого преобразователем насоса к сети питающего напряжения.

    Таким образом, для реализации данного способа пуска насосов необходимо решить две задачи:
    а) переключение насоса, управляемого преобразователем частоты, к сети питающего напряжения;
    б) пуск следующего по приоритету насоса от преобразователя частоты.

    Механическая М=М(S) и электромеханическая I1=I1(S) характеристики электродвигателя насоса при переключении от ПЧ к сети питающего напряжения представлены на рис. 7.

    Вращение насоса преобразователем частоты перед подключением к сети производится с номинальными значениями частоты вращения nном, момента Мном при номинальном значении скольжения Sном. При отключении обмоток электродвигателя от преобразователя частоты в момент времени коммутации tк двигатель переходит в генераторный режим, его скольжение изменяет знак и принимает значение -1 < -Sк < -Sкр.

    Величина скольжения Sк<0 в генераторном режиме при отключении питающего напряжения ПЧ зависит от инерционности электродвигателя и насоса, определяемой массой и диаметром ротора электродвигателя и рабочего колеса насоса . Очевидно, чем мощнее и, соответственно, инерционнее электродвигатель и насос, тем ближе точка –Sк приближается к значению -1, и тем больше интервал времени полного останова насоса tа, tб (рис.7).

    Ток ротора оказывает размагничивающее влияние на обмотку статора , поэтому при подключении электродвигателя насоса к сети питающего напряжения без выдержки времени после отключения от ПЧ в генераторном режиме при S<0 возможен бросок тока до значения I1макс > I1кз(рис.7).

    Для снижения бросков тока подключение электродвигателя насоса к сети питающего напряжения после его отключения от ПЧ целесообразно производить в интервале времени tа≤t≤tб при скольжении -Sа≤-Sк≤-Sб, при этом ток статора приобретает значения I1a≤I1≤I1б. Момент на валу электродвигателя насоса при его подключении с сети питающего напряжения из состояния вращения меняет знак с «-» на «+», при этом его значение не выходит за пределы максимального момента сопротивления в генераторном режиме -Ммакс г и максимального момента вращения в двигательном режиме Ммакс дв в течение интервала времени ta≤t≤tб, что обеспечивает минимальные изменения напора и, соответственно, снижение гидроударов в напорной магистрали при коммутации насосов.

    Рис. 7. Механическая М=М(S) и электромеханическая I1=I1(S) характеристики электропривода насоса


    Ммакс дв – максимальное значение момента вращения в двигательном режиме, соответствующее значению скольжения Sкр > 0; Мном – номинальное значение момента вращения, соответствующее номинальному скольжению Sном; М0 – пусковой момент при S=1; -Ммакс г – максимальное значение момента сопротивления в генераторном режиме, соответствующее значению скольжения -Sкр<0; I1кз – значение тока короткого замыкания при S=1; I1макс – максимальное значение тока статора при S<0 в генераторном режиме; -Sк – скольжение в момент времени tк отключения питающего напряжения ПЧ; -Sа,-Sб – скольжение в моменты времени tа и tб подключения насоса к сети питающего напряжения.

    При увеличении интервала времени подключения насоса к сети питающего напряжения из состояния его вращения за значение tб возможен полный останов насоса. При этом скольжение принимает значение S=1. Подключение насоса к сети питающего напряжения из состояния S=1 приводит к изменению момента вращения на валу насоса от пускового значения М0 до номинального значения Мном в течение времени прямого пуска (tпуска ≤0,06 секунд) через значение Ммакс дв (рис.7), что приводит к гидроудару в напорной магистрали.

    Для рассматриваемого способа пуска интервал времени tб-tа >> t2-t1 интервала времени способа пуска «звезда – треугольник», поэтому его реализация не требует дополнительных аппаратных затрат.

    На рис. 8 представлена осциллограмма фазного напряжения обмотки статора насоса мощностью 11 кВт при его отключении от ПЧ и последующем подключении к сети питающего напряжения. При отключении двигателя от ПЧ он переходит в генераторный режим за счет остаточного намагничивания обмоток статора и инерционного вращения ротора. При этом электромагнитное поле обмоток затухает по мере останова ротора электродвигателя насоса на «самовыбеге».

    Рис. 8. Осциллограмма напряжения обмоток электродвигателя насоса Р=11 кВт при отключении питающего напряжения


    Осциллограммы активного тока насоса мощностью 11 кВт при его переключении от ПЧ к сети питающего напряжения для разных значений времени переключения представлена на рис. 9.

    а) t переключения = 0,20 секунд


    б) t переключения = 0,34 секунды

    Рис. 9. Переключение от ПЧ к сети питающего напряжения


    Анализ осциллограмм показывает, что бросок активного значения тока статорных обмоток насоса при его подключении к сети питающего напряжения после работы от ПЧ уменьшается от значения 3*Iном до значения 1,5Iном при уменьшении времени переключения от 0,2 до 0,34 секунды. На диаграмме рис.7 это соответствует значениям тока статора соответственно I1а и I1б при увеличении времени коммутации от значения tа до значения tб.

    После переключения регулируемого ПЧ насоса к сети питающего напряжения пуск следующего по приоритету дополнительного насоса производится от ПЧ по заданной рампе до частоты вращения, определяемой процессом регулирования.

    Таким образом, наиболее рациональным способом пуска дополнительных насосов в насосных станциях повышения давления с одним ПЧ в схеме управления является пуск каждого дополнительного насоса от ПЧ после переключения регулируемого насоса из состояния его вращения к сети питающего напряжения.

    При этом необходимо выдерживать временные интервалы между отключением насоса от ПЧ и его последующем подключении к сети питающего напряжения. Уменьшение интервала времени коммутации насоса вызовет значительные броски тока в сети питающего напряжения, что приведет к срабатыванию защиты насоса. Увеличение времени коммутации приведет к полному останову насоса и возникновению гидроудара в напорной магистрали при его подключении к сети питающего напряжения. Интервалы времени коммутации определяются мощностью электродвигателя насоса и должны настраиваться при индивидуальной наладке установки повышения давления.

    Плавный пуск дополнительных насосов при условии «безударного» включения регулируемого насоса к сети питающего напряжения с использованием кинетической энергии его вращения позволяет уменьшить гидроудары, а также броски тока в электрических сетях, обеспечивая тем самым отсутствие порывов в напорных магистралях, а также надежную работу электротехнического оборудования. Повышение качества переходных процессов в электрических сетях и напорных магистралях для данного способа пуска дополнительных насосов достигается при сокращении аппаратных затрат в насосных станциях повышения давления.

    Литература

    1. Лезнов Б.С. Энергосбережение и регулируемый привод в насосных и воздуходувных установках. – М.: Энергоатомиздат, 2006. - 360 с.ил.
    2. Кацман М.М. Электрические машины. – 3-е изд., испр. – М.: Высшая школа, 2000. – 463 с.ил.
    3. Ключев В.И. Теория электропривода. – М.: Энергоатомиздат, 1998.-704с.ил.
    4. ЗАО НТЦ «Приводная техника». Методика выбора мотор-редуктора. Материалы сайта www.privod.ru.

    Скважинный насос, вследствие необходимости обеспечить высокую производительность при довольно небольших поперечных габаритах, представляет собой сложное устройство, работающее в довольно жестких условиях. А если учесть, что монтаж его (а также демонтаж) представляет собой довольно трудоемкую работу, то надежность скважинного насоса приобретает первостепенное значение. Одним из факторов, оказывающих решающее влияние на продолжительность работы этого агрегата, являются пусковые токи. Вследствие того, что вращающиеся части электродвигателя и самого насоса имеют определенную инерцию, в отличие от тока (то есть величина тока может практически мгновенно достигать очень высоких значений), то при включении возникают пусковые токи, которые в 4-10 раз превышают номинальные! А если еще скважинный насос включается часто? Например, из-за небольшого объема мембранного гидроаккумулятора или неправильной настройки реле давления? Понятно, что, в конце концов, изоляция обмотки электродвигателя не выдержит таких высоких тепловых нагрузок и произойдет короткое замыкание, следствием которого явится выход насоса из строя. Чтобы уменьшить пусковые токи, используются различные системы плавного пуска.

    Виды плавного пуска

    В настоящее время для скважинных насосов в основном используются две системы плавного пуска:

    1. 1.Плавный пуск SS . При этом способе при помощи электроники на электродвигатель подается плавно повышающееся напряжение (а значит и плавно повышающийся ток). Регулировка напряжения производится путем фазового управления. По такому принципу работают многие станции (пульты) управления скважинными насосами, как отечественных, так и зарубежных торговых марок: Каскад, Высота, Grundfos, Pedrollo и др.
    2. 2. Плавный пуск с помощью преобразования частоты. Этот способ является наиболее совершенным с точки зрения снижения пусковых токов. Преобразование частоты позволяет удерживать пусковой ток на уровне номинального. Основной недостаток станций (пультов) управления с частотно-регулируемым приводом – это их высокая стоимость, сравнимая со стоимостью самого насоса. Среди отечественных моделей стоит выделить СТЭП, СУ-ЧЭ, СУН. АСУН. Наиболее популярными зарубежными моделями являются SIRIO и SIRIO-ENTRY 230 итальянской торговой марки ITALTECNICA. Следует сказать, что в скважинных насосахсерии SQ/SQE встроена система плавного пуска на основе преобразования частоты.

    Преимущества плавного пуска

    1. Снижение пусковых токов (в случае с частотно-регулируемым приводом пусковые токи уменьшаются до номинальных).
    2. Снижение механических нагрузок на рабочее колесо и подшипники скважинного насоса.
    3. Уменьшение или вовсе предотвращения гидроудара, возникающего в момент включения насоса. Гидроудар отрицательно воздействует не только на сам насос, но и на скважину, вызывая дополнительные нагрузки на стыки обсадных труб и вызывая быстрый износ фильтров. Как следствие, скважина начинает песковать.

    На основе частотно-регулируемой системы плавного пуска можно реализовать управление мощностью насосы путем изменения частоты вращения его двигателя. То есть система управления точно подбирает частоту вращения электродвигателя, а значит и его мощность в соответствии с требуемой в данный момент производительностью, поддерживая постоянное давление в сети. Другими словами, на работу электродвигателя расходуется ровно столько электроэнергии, сколько нужно для обеспечения требуемой производительности и ни джоулем больше. Такая система реализована в скважинных насосах Grundfos серии SQE.

    Серии ES024 компания «Эффективные Системы» производит станции управления , способные объединять в единую систему до 7 насосов номинальной мощностью от 1,5 до 315 кВт, номинальным напряжением 380 В. По техническому заданию заказчика возможно изготовление станций управления иных номинальных мощностей и напряжений.

    В зависимости от потребности заказчика в станциях управления насосами производства компании «Эффективные Системы» могут быть реализованы следующие функции:

    1. Настройка до 8 различных заданных уровней давления, которые необходимо поддерживать, распределенных по времени суток;
    2. Возможность перехода системы в «спящий режим» при отсутствии водоразбора или при малом водоразборе, что позволяет существенно снизить энергопотребление;
    3. Периодическая смена насосов, позволяющая обеспечить их равномерный износ и избежать ржавления резервных насосов;
    4. Управление дренажными насосами, позволяющее контролировать уровень сточных вод;
    5. Определение уровня жидкости и управление наполнением резервуара, позволяющие запускать насос в зависимости от количества жидкости в резервуаре и восполнять ее расход с заданным уровнем подачи;
    6. Сигнализация о повышенном и пониженном давлении в трубопроводе;
    7. Занесение в память токовых параметров до 7 двигателей насосов для обеспечения токовой защиты и защиты от перегрузки любого насоса, работающего в каждый конкретный момент времени;
    8. Диагностика неисправностей, позволяющая автоматически выявлять и исключать из алгоритма работы системы неисправные насосы.

    Для получения технико-коммерческого предложения свяжитесь с нами одним из указанных вверху и внизу данной страницы способом.

    КРАТКАЯ СПРАВКА: ПЛАВНЫЙ ПУСК НАСОСОВ

    На практике пусковой ток электродвигателей насосов в 3-5 и более раз превосходит номинальный ток. Это в конечном счете приводит к увеличенному тепловому износу изоляции обмоток статора (из-за этого в значительной степени снижается долговечность работы и надежность электродвигателя насоса). Помимо этого, если мощность питающей сети недостаточна, возможно краткосрочное падение напряжения, а это уже может негативно влиять на работу другого электрооборудования, запитанного от той же сети.

    Прямой пуск насоса вреден и для агрегата и для скважины в целом, так как сопровождается гидроударами, которые разрушают запорную арматуру, трубопровод и сам насос. При прямом запуске скважинного насоса может наблюдаться сильный приток воды из водного пласта и это приводит к разрушению фильтровальной зоны, а, следовательно, к попаданию песка в скважину.

    Единственным эффективным решением данных проблем является реализация плавного пуска насоса , для чего разработан целый ряд технических средств, в том числе устройства плавного пуска и преобразователи частоты.

    Задача устройств плавного пуска — обеспечить защиту насосных агрегатов от высокого пускового тока, механических перегрузок, гидроударов, т.е. обеспечить долговечность и надежную эксплуатацию оборудования. Наряду с решением задачи плавного пуска применение преобразователей частоты при работе насосов позволяет согласовать производительность насоса с расходом перекачиваемой жидкости в каждый момент времени, что позволяет значительно снизить энергопотребление системы.

    Устройство плавного пуска - электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

    Назначение

    Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

    • невозможность согласования крутящего момента двигателя с моментом нагрузки,
    • высокий пусковой ток.

    Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

    Принцип действия устройство плавного пуска

    Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

    Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

    Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

    Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами "номинал в номинал". Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

    Выбор устройства плавного пуска


    При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

    Как реализуется плавный пуск

    Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

    1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
    2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

    а) автотрансформатора или реостата;

    б) ключевыми схемами на базе тиристоров или симисторов.

    Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

    Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

    Критерии выбора софтстартера

    По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

    • Мощность.
    • Количество управляемых фаз.
    • Обратная связь.
    • Функциональность.
    • Способ управления.
    • Дополнительные возможности.

    Мощность

    Главным параметром УПП является величина I ном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил... Тогда I ном софтстартера должен быть в 8-10 раз больше.

    Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

    Количество фаз

    Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

    Обратная связь

    УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

    Функциональность

    Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

    Способ управления

    Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

    Дополнительные функции

    Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

    Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

    Зачем нужно устройство плавного пуска (софтстартера)

    Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

    Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

      некоторая электротехника может самопроизвольно отключаться;

      возможен сбой оборудования и т. д.

    Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

    Что такое пусковой ток

    В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

    Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

    В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

    Способы защиты электродвигателя

    Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

    В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

    Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

    В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

    Виды устройств плавного пуска

    На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

    Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

    Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

    Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

    Зачем же нужно устройство плавного пуска?

    Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

    Остались вопросы?
    Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
    8-800-700-11-54 (8-18, Пн-Вт)

    Преимущества регистрации

    Вы сможете:

    • Приобретать оборудование со скидкой сразу после регистрации
    • Совершать покупки намного быстрее и удобнее
    • Следить за выполнением заказов
    • Смотреть историю своих заказов, получать рекомендации
    • Получить накопительную систему скидок на все оборудование
    • Участвовать в акциях
    • Получать первыми информацию о новых товарах и услугах
    • Видеть документы по отгрузкам
    • Получать консультации у специалиста, прикрепленного к вашей компании

    Получите доступ ко всем предложениям

    Войдите под своим логином или пройдите легкую процедуру регистрации и получите доступ ко всем горячим предложениям

    Зарегистрироваться

    Похожие видеообзоры



    Loading...Loading...