Повышение эффективности систем отопления. Повышение эффективности отопительных систем

Помимо вышеперечисленных аспектов пассив­ного энергосбережения также стоит упомянуть о новейших решениях с привлечением высоких техно­логий. Такой подход требует внесения значительных и порой радикальных изменений в распространен­ную в нашей стране схему централизованного ото­пления. Большой эффект может быть также получен за счет частичной реконструкции систем отопления.

Существует несколько различных путей повыше­ния эффективности отопительных систем жилых до­мов, отличающихся как объемом затрат при их реа­лизации, так и ограничениями применения.

Наиболее консервативный путь энергосбережения для варианта теплоснабжения от ЦТП – это уста­новки в домах на приборах отопления индивидуаль­ных термостатических регуляторов. Как показывают исследования, внедрение комплексной автоматиза­ции позволяет снизить теплопотребление дома в це­лом (по сравнению с элеваторным узлом) на 15–20 %. Зарубежный опыт показывает, что индивиду­альный учет тепла в комбинации с возможностью регулирования теплопотребления дает экономию теп­ла до 25 %. Эта схема сегодня реализуется в поквартирных системах отопления, например, в экспери­ментальных проектах.

С другой стороны, разработчики и строители но­вых жилых зданий все чаще приходят к выводу о значительных преимуществах современных децен­трализованных систем отопления перед традицион­ными централизованными системами. Не секрет, что в последние годы работа систем центрального отопления почти повсеместно значительно ухудши­лась по причине хронического недофинансирова­ния и износа оборудования. Поэтому часты аварии, остановки и банальный обман потребителя, когда умышленно понижаются давление и температура в теплоцентралях, и потребитель недополучает тепло, исправно за него платя. Такие негативные моменты сведены в системах децентрализованного отопле­ния к минимуму.

Еще одним преимуществом децентрализованных систем оказывается гибкое регулирование мощнос­ти, позволяющее сильно уменьшать ее или полнос­тью отключать систему в случае ненадобности, на­пример, при потеплениях. Кроме того, важным фак­тором можно считать также минимальные теплопо­тери в тепловых сетях, поскольку потребление тепла происходит в непосредственной близости от места его производства, то есть в целом децентрализован­ные системы имеют гораздо больший КПД, чем сис­темы центрального отопления.

Еще одной альтернативой традиционному цент­ральному отоплению в последнее время становится электрическое отопление, которое прежде не на­ходило в России широкого применения и счита­лось убыточным (в 1995 году отапливалось менее 1 % жилого фонда). В то же время доля электричес­кого отопления в Финляндии, Швеции и Дании дос­тигает 50 %.

Но отношение к этому виду отопления быстро меняется в связи с неуклонным подорожанием всех энергоносителей. Причем потенциал роста цен до уровня мировых самый большой у газа, и минималь­ный - у электроэнергии.

Очевидно, из-за этого в последние 3-5 лет произо­шел бурный рост числа систем электрического ото­пления. Например, в Екатеринбурге в течение 2000 г. более 15 % вновь построенного жилья было оснаще­но кабельными системами подогрева пола.

Уже сейчас комбинированные системы электри­ческого отопления не дороже при создании и в эксп­луатации, чем система центрального отопления, и это преимущество будет только расти со временем.

В 2016 году частные потребители тепла в Украине получают тепло из следующих источников: 1. Наиболее распространенный - от электричества, электрокотлы, электрокамины, электрообогреватели... Источником без подробностей в большинстве случаев является "энергия …

Более полугода изучаю вакуумные солнечные трубки длиной 1800 внешним диаметром 58мм внутренним 43-44мм. Внутренний объем трубки - 2,7 литра. Иногда на активном ярком солнце мощность трубки показывало около 130-150Вт, но …

Закрытые геотермальные системы, обеспечивающие только горячее водоснабжение. В зависимости от расположения места сброса и источника питьевой воды могут быть использованы три вида схемного решения. Схема (рис. 2.6.). Геотермальная вода подается …

К.т.н. Е.Г. Гашо, к.т.н. С. А. Козлов,
ОАО «Объединение ВНИПИэнергопром», г. Москва;
к.т.н. В.П. Кожевников,
Белгородский государственный технический университет им. В.Г. Шухова

Проблему создания надежного, устойчивого, эффективного энергообеспечения коммунально-технологических комплексов зачастую подменяют надуманными дилеммами подбора источников энергии, настойчивой пропагандой автономности теплоэнерго-снабжения, при этом активно ссылаясь на избранный зарубежный опыт. Повышение транзакционных затрат (т.е. затрат на распределение и доставку ТЭР потребителям) в системах централизованного теплоснабжения (ЦТ) породило целую волну мероприятий по разделению сетей, появление различных автономных источников тепловой энергии разной мощности, обслуживающих непосредственно здания, и в конечном счете, к по-квартирным теплогенераторам. Разделение систем ЦТ на автономные и квазиавтономные элементы и блоки, предпринимаемое якобы в целях повышения эффективности, зачастую приводит только к дополнительной дезорганизации и неразберихе.

Отставание строительства тепловых сетей, не всегда своевременный ввод тепловых нагрузок промышленности и ЖКХ, завышение тепловых нагрузок потребителей, изменение состава и технологии предприятий приводило к недопустимо долгому (10-15 лет) сроку вывода турбин на проектные параметры с полной загрузкой отборов. Именно недостатки структурного развития систем теплоснабжения (нехватка пиковых агрегатов, неразвитость сетей, отставание ввода потребителей, завышение расчетных нагрузок потребителей и ориентация на строительство мощных ТЭЦ) обусловили существенное снижение расчетной эффективности теплофикационных систем.

В основе всеобъемлющего и массового кризиса систем жизнеобеспечения страны лежит комплекс причин, в числе которых не только удорожание топлива, износ основных фондов, но и существенное изменение расчетных условий эксплуатации, графика тепловых нагрузок, функционального состава оборудования. Кроме того, существенная доля промкомплекса и сопутствующих энергоисточников, а это не менее 30-35% суммарного энергопотребления, после распада СССР оказалась вне России. Значительное число мощных энергообъектов, линий электропередач, трубопроводов, энергомашиностроительных заводов находятся на территории соседних государств (Казахстана, Украины, Беларуси и др.). Соответствующие разрывы технологических связей и систем энерго-, топливоснабжения послужили дополнительным фактором ухудшения условий функционирования систем жизнеобеспечения .

Преобладание промышленной нагрузки ТЭЦ, превышающей отопительную нагрузку практически вдвое, во многом сглаживала сезонные пики коммунального теплопотребления городов. Резкое сокращение промышленного теплопотребления привело к переизбытку централизованных мощностей при возрастании роли именно пиковых источников и агрегатов. Проблема стоит острее именно в крупных городах с высокой долей промышленного энергопотребления, в небольших городах система легче выходит на расчетные параметры.

Зарубежный опыт

Большинство работ, активно пропагандирующих автономные системы отопления, считают своим долгом ссылаться на западный опыт, в котором практически нет места ТЭЦ и «гигантским расточительным теплотрассам». Фактический Европейский опыт свидетельствует об обратном. Так, в Дании, во многом под влиянием советской практики, основой жилищной инфраструктуры стало именно централизованное теплоснабжение. В результате реализации государственной программы, к середине 1990-х гг. доля систем ЦТ в этой стране составляла около 60% общего потребления тепла, а в крупных городах - до 90%. К системе централизованного теплоснабжения было подключено более тысячи когенерационных установок, обеспечивающих теплом и электроэнергией более 1 млн зданий и промышленных сооружений. При этом потребление энергоресурсов на 1 м 2 только за период 1973-1983 гг. сократилось в два раза . Причины разительных отличий между Россией и Данией заключаются в первоначальных вложениях и возможностях эксплуатации теплосетей. Эффективность датского примера обусловлена введением новых материалов и технологий (пластиковые трубы, современное насосное и запорное оборудование и пр.), способствовавших видимому снижению потерь. В магистральных и распределительных трубопроводах Дании они составляют всего около 4%.

Использование систем ЦТ для теплообеспечения потребителей по отдельным странам Центральной, Восточной Европы показано на рис. 1.

К примеру, рационализация теплоснабжения Восточного Берлина основывалась на поэтапной замене, реконструкции магистралей, установке узлов учета и регулирования, применении более совершенных схемно-параметрических решений и оборудования. В зданиях до реконструкции наблюдались значительные «перетопы» и неравномерность при распределении тепловой энергии как в объеме зданий, так и между зданиями. Реконструкции были подвергнуты около 80% зданий, в 10% системы теплоснабжения полностью заменены, в процессе реконструкции внутренних и перехода от однотрубных систем в зданиях к двухтрубным, были пересчитаны площади отопительных приборов, рассчитаны расходы воды в системах отопления зданий, заказаны новые регулировочные вентили. Отопительные приборы были оснащены вентилями с термостатами, регулировочные клапаны установлены на стояках зданий.

Системы присоединения в целом заменены на независимые, произведен переход от ЦТП к ИТП, температура теплоносителя снижена до 110 ОC. Расход воды в системе удалось снизить на 25%, снизились отклонения температур у потребителей. Циркуляционные сети отопления зданий использованы для нагрева воды в системе ГВС. В настоящее время нет лимитов по тепловым мощностям источников, есть ограничения только по пропускной способности трубопроводов.

Расходы горячей воды у жильцов составляли свыше 70-75 л/сутки, после переоборудования системы снизились до 50 л/сутки. Установка счетчиков воды дополнительно привела к снижению до 25-30 л/сутки. В целом совокупность мероприятий и схемных решений привела к снижению затрат на отопление зданий с величины 100 Вт/м 2 до 65-70 Вт/м 2 . Законы в Германии предписывают нормативное снижение энергозатрат с величины 130 кВт.ч/м 2 .год в 1980 г. до 100 кВт.ч/м 2 .год в 1995 г., и до 70 кВт.ч/м 2 .год к 2003 г.

Отечественный опыт

Значительное число работ по установке и налаживанию систем учета энергоресурсов свидетельствует, что максимальные потери тепла наблюдаются не в сетях, о чем говорилось выше, а именно в зданиях. Во-первых, эти нестыковки обнаружились между договорными значениями и фактически полученным количеством тепла. И, во-вторых, между фактически полученным и необходимым количеством тепла зданию. Эти расхождения доходят до 30-35%! Безусловно, снижать потери тепла при транспортировке по тепловым сетям необходимо, хотя они существенно ниже .

Также необходимо отметить наличие «перетопов» в жилых зданиях, которые обусловлены разными факторами. Здания рассчитаны на одинаковые нагрузки, а на самом деле в одних потребляется больше тепла, в других меньше. Обычно люди мало жалуются на «перетопы». И, скорее всего, если в квартире установлен собственный котел, экономия тепла получается не такая уж и большая, поскольку человек, привыкнув к таким температурным условиям, будет давать столько тепла, сколько ему необходимо, чтобы обеспечить себе комфортные условия.

Фактические значения удельных энергозатрат зданиями в зависимости от термического сопротивления ограждений представлены на рис. 2. Верхняя линия тренда - по фактическим значениям удельных энергозатрат, нижняя - теоретические балансовые затраты для зданий, при среднем нормативном значении для Москвы q = 0,15-0,21 Гкал/м 2 .год. Нижняя линия тренда на рис. 2 -функциональные балансовые значения, необходимые для поддержания нормативных температур в зданиях. Эти значения (фактические и теоретические) близки в зоне недостаточных термических сопротивлений R=0,25-0,3 К.м 2 /Вт, т.к. в этом случае зданиям требуется значительное количество тепла. Одна из точек, близкая к нижнему тренду с R = 0,55 К.м 2 /Вт принадлежит комплексу зданий в Мещанском районе ЦАО г. Москвы, в которых была осуществлена полная промывка системы отопления. Сравнение показывает, что ряд зданий города, будучи «освобожденными» от 15% «перетопов», вполне удовлетворяют современным Европейским требованиям по энергоэффективности .

Видно, что фактические значения энергопотребления для зданий с приемлемыми термическими сопротивлениями довольно сильно отклоняются от теоретической балансовой кривой. Степень отклонения фактических точек от идеальной нижней кривой характеризует неэффективные режимы работы, нерациональный перерасход энергии, а степень совпадения - относительную эффективность по сравнению с оптимальным базовым (балансовым) вариантом. В том числе по нижней базовой кривой целесообразно рассчитывать минимально необходимые лимиты теплопотребления зданий и сооружений, исходя из фактических или прогнозируемых температур отопительного периода.

Выявленные «перетопы» значительного числа городских зданий ставят под сомнение некоторые сложившиеся в последнее время стереотипы, связанные с показателями энергетической эффективности коммунального хозяйства. Сравнительный анализ показывает, что ряд городских зданий потребляет тепла на отопление единицы площади в пересчете на климат Берлина даже меньше, чем это требуется по Европейским нормам 2003 г.

Конкретная реализация проектов поквартирного отопления

Начиная с 1999 г., Госстрой РФ (ныне Федеральное агентство по строительству и ЖКХ РФ -Росстрой) проводит эксперименты по строительству и эксплуатации многоэтажных домов с поквартирным отоплением. Такие жилые комплексы уже построены и успешно функционируют в Смоленске, Серпухове, Брянске, Санкт-Петербурге, Екатеринбурге, Калининграде, Нижнем Новгороде. Самый большой опыт эксплуатации настенных котлов с закрытой камерой сгорания накоплен в Белгороде, где ведется квартальная застройка домов с применением систем поквартирного отопления. Есть положи-

тельный пример их эксплуатации и в северных районах - например, в г. Сыктывкаре.

Город Белгород был одним из первых городов России (в 2001-2002 гг.), в котором стали использовать поквартирное отопление в новых многоквартирных жилых зданиях. Это обуславливалось рядом причин, в том числе, как ранее всем казалось, большими тепловыми потерями в магистральных и разводящих тепловых сетях. А также достаточно активным строительством жилых многоэтажных зданий, что в первую очередь объяснялось притоком денег с Севера. В результате этого в ряде случаев некоторые здания были оборудованы системой индивидуального отопления помещений.

Для квартирного отопления использовались котлы как отечественных, так и зарубежных производителей. Несколько зданий с подобными системами было воздвигнуто достаточно быстро и без присоединения к тепловым сетям (в центре города, в Южной его части). Система автономного отопления в здании выглядит следующим образом. Котел располагается на кухне, от него дымовая труба пронизывает балкон (лоджию) и «врезается» в общую дымовую трубу, которая уходит наверх и от верхнего этажа поднимается на несколько метров.

Дымовая труба в этом случае в несколько раз ниже, чем у обычной квартальной котельной, естественно ожидать больших приземных концентраций выбрасываемых компонентов. В конкретных условиях необходимо сопоставлять еще и другие факторы (экономию топлива, снижение валового объема выбросов и пр.).

Безусловно, с точки зрения бытового комфорта, поквартирное отопление поначалу представляется более удобным. Например, котел включается при более низких наружных температурах, чем в случае использования системы ЦТ (ориентировочно при t нв =0 -–2 ОС), т.к. в квартире приемлемая температура. Котел включается автоматически при снижении температуры внутри помещения, на которую его настраивают жильцы. Также котел автоматически включается при появлении нагрузки на ГВС.

Практически первым важным фактором здесь является не поквартирная разводка, а именно термическое сопротивление здания (наличие больших лоджий, которые люди дополнительно утепляют). При отсутствии должного опыта эксплуатации пока трудно провести адекватное сравнение удельных затрат на отопление при поквартирной системе и в случае ЦТ, будем надеяться, такая возможность нам представится позднее.

При оценке финансовых затрат на систему поквартирного отопления в процессе активной эксплуатации не всегда учитывалась амортизация котлов, их полная стоимость (для жителей) и т.д.

Производить корректное сравнение возможно только при сопоставимых энергетических условиях. Если разобраться комплексно, то система поквартирного отопления получается не такой уж и дешевой. Понятно, что индивидуальный комфорт с возможностью такого распределенного регулирования всегда стоит дороже.

Что получили в процессе эксплуатации системы поквартирного отопления на примере г. Белгород

1. В жилых зданиях появились неотапливаемые зоны: подъезды; лестничные клетки. Известно, что для нормальной эксплуатации зданий необходимо обеспечивать отопление всех его помещений (всех зон). Почему-то на этапе проектирования жилых построек об этом не задумывались. И уже во время их эксплуатации начали придумывать всякие экзотические способы отопления нежилых зон, вплоть до электроотопления. После чего сразу возник вопрос: а кто будет платить за отопление нежилых зон (за электроотопление)? Начали думать как «разбрасывать» плату на всех жителей, и каким образом. Таким образом, у жителей появилась новая статья расходов (дополнительные затраты) на отопление нежилых зон, которую, конечно, никто не учитывал на стадии проектирования системы (как было сказано выше).

2. В г. Белгороде, как и в ряде других регионов, определенная доля жилья покупается населением впрок. Это в первую очередь касается жилья для «северян». Люди, как правило, оплачивают все предоставляемые им жилищные услуги, но в квартирах не живут или живут наездами (например, в теплое время года). По этой причине многие квартиры также явились холодными (неотапливаемыми) зонами, что привело к ухудшению теплового комфорта, так и к ряду других проблем (система рассчитана на общую циркуляцию). В первую очередь появилась проблема, связанная с невозможностью запустить котел в неотапливаемых квартирах ввиду отсутствия их хозяев, а компенсировать тепловые потери необходимо (за счет соседних помещений).

3. Если котел долгое время не работает, он требует определенного предварительного осмотра перед запуском. Как правило, обслуживанием котлов занимаются специализированные организации, а также газовые службы, но, несмотря на это, вопрос обслуживания индивидуальных источников тепла в городе до конца не решен.

4. Котлы, используемые в системе поквартирного отопления, являются оборудованием высокого уровня и, соответственно, требуют более серьезного обслуживания и подготовки (сервиса). Таким образом, требуется соответствующий энергосервис (не дешевый), а если у ТСЖ нет средств для проведения такого рода обслуживания?

Распределенное регулирование теплопотребления

Как крышные котельные, так и поквартирные системы наиболее эффективны только при возможности использования в качестве топлива природного газа. Резервного топлива для них, как правило, нет. Поэтому возможность ограничения поставок или повышения стоимости газа настоятельно требуют поиска на перспективу новых решений. В электроэнергетике для этого вводятся мощности на угольных, атомных и гидроэлектростациях, более активно используется местное топливо, отходы, есть перспективные решения по использованию биомассы. Но решить вопросы теплоснабжения за счет электрогенерации на ближайшую перспективу экономически нереально. Эффективнее применение теплонасосных установок (ТНУ), в этом случае расход электроэнергии составляет только 20-30% от общей потребности в тепле, остальное получают преобразованием тепла низкого потенциала (рек, грунта, воздуха). На сегодняшний день тепловые насосы широко применяются во всем мире, количество работающих в США, Японии и Европе установок исчисляется миллионами. В США и Японии наибольшее применение получили ТНУ класса «воздух - воздух» для отопления и летнего кондиционирования воздуха. Однако для сурового климата и городской застройки с высокой плотностью тепловой нагрузки получить нужное количество низкопотенциального тепла в период пиковых нагрузок (при низких температурах наружного воздуха) затруднительно, в реализованных проектах крупные ТНУ используют тепло морской воды. Наиболее мощная теплонасосная станция (320 МВт) работает в Стокгольме.

Для городов России с крупными теплофикационными системами наиболее актуален вопрос эффективного применения ТНУ как дополнения к существующим системам централизованного теплоснабжения.

На рис. 3, 4 показана принципиальная схема ЦТ от паротурбинной ТЭЦ и типовой температурный график сетевой воды. Для существующего микрорайона при подаче на ЦТП сетевой воды 100 т/ч с температурами 100/50 ОС потребители получают свои 5 Гкал/ч тепла. Новый объект может получить из той же сетевой воды еще 2 Гкал/ч тепла, при охлаждении с 50 до 30 ОС, что не изменяет расхода сетевой воды и затрат на ее перекачку, и обеспечивается без перекладки теми же тепловыми сетями. Важно то, что в соответствии с температурным графиком обратной сетевой воды есть возможность получения дополнительного количества тепла именно при низких температурах наружного воздуха.

На первый взгляд, применение ТНУ, использующей в качестве источника тепла обратную сетевую воду, при учете полной стоимости тепла неэкономично. Например, эксплуатационные затраты на получение «нового» тепла (при тарифе ОАО «Мосэнерго» по постановлению РЭК г. Москвы от 11.12.2006 г. № 51 на тепло 554 руб./Гкал и на электроэнергию 1120 руб./МВт.ч) составят 704 руб./Гкал (554x0,8+1120x0,2x1,163=704), т.е. на 27% выше собственно тарифа на тепло. Но если новая система позволяет (такая возможность есть, что является предметом последующего рассмотрения) сократить теплопотребление на 25-40%, то такое решение становится экономически равноценным по текущим эксплуатационным расходам.

Заметим также, что в структуре тарифа для ОАО «Мосэнерго» тариф на производство тепла составляет только 304 руб./Гкал, а 245 руб./Гкал - это тариф на транспорт тепла (сбытовая надбавка - 5 руб./Гкал). Но передача дополнительного низкопотенциального тепла не увеличила затрат на его транспорт! Если исключить, что вполне обоснованно, для ТНУ транспортную составляющую, то получаем эксплуатационную составляющую стоимости «нового» тепла от ТНУ уже только 508 руб./Гкал.

Более того, в перспективе реально введение разных тарифов на тепло от ТЭЦ - в зависимости от потенциала - ведь снижение температуры обратной сетевой воды и дополнительный отпуск тепла обеспечивают на ТЭЦ выработку электроэнергии наиболее эффективным комбинированным теплофикационным способом, меньший сброс тепла в градирнях и повышает пропускную способность тепломагистралей. Так, в работах А.Б.Богданова приведена характеристика относительного прироста топлива на отпуск тепла от паровой турбины Т-185/215 Омской ТЭЦ-5 и показано, что прирост условного расхода топлива на прирост тепловой нагрузки составляет 30-50 кг/Гкал в зависимости от температуры сетевой воды и от электрической загрузки турбины, что подтверждается путем прямых измерений. Т.о. при неизменной электрической нагрузке дополнительный расход топлива на ТЭЦ для отпуска тепла в 3-5 раз ниже, чем от водогрейных котлов.

Наиболее эффективно применение в климатических системах применение ТНУ «вода - воздух», т.е. не нагрев воды для системы отопления, а получение воздуха требуемых параметров -это реальная возможность создания комфортных условий даже при нестабильной работе теплосети, где не выдерживаются температурные и гидравлические режимы, используя количество тепла от источника и переводя его в качество теплоснабжения. Одновременно такая система решает вопрос охлаждения воздуха в летнее время, что особенно актуально для современных офисных и культурно-бытовых центров, элитных жилых комплексов, гостиниц, где вполне естественное требование - кондиционирование воздуха - зачастую крайне неэффективно обеспечивается стихийным оснащением помещений сплит-системами с внешними блоками на фасаде здания. Для объектов с необходимостью одновременно нагревать и охлаждать воздух используется кольцевая система нагрева и кондиционирования воздуха - решение, в России известное по 15-летнему опыту эксплуатации гостиницы «Ирис Конгресс Отель» в Москве , в настоящее время такие решения реализуются и на других объектах. В основе кольцевой системы - циркуляционный контур с температурой воды на уровне 20-30 ОС; у потребителей установлены тепловые насосы «вода - воздух», которые охлаждают воздух в помещении и перекачивают его тепло в общий водяной контур или из общего (водяного) контура перекачивают тепло в помещение, подогревая воздух. Температура воды в водяном контуре поддерживается в определенном диапазоне известными методами - это отвод избыточного тепла летом с помощью градирни, подогрев воды зимой сетевой водой. Расчетная мощность как градирни, так и теплоисточника при этом существенно меньше, чем требовалось бы при традиционных системах кондиционирования и теплоснабжения, а строительство зданий, оснащенных такими системами, меньше зависит от возможностей системы транспорта тепла.

Вместо заключения

На сегодняшний день можно сделать однозначный вывод - той эйфории, которая была на начальном этапе внедрения систем поквартирного отопления в многоквартирных жилых зданиях, сейчас уже нет. Системы поквартирного отопления устанавливались потому, что темпы строительства были достаточно интенсивными, и имелась возможность внедрения новых проектов подобного рода (хотя, возможно, не всегда обдуманно). Сейчас полного отказа от этих систем не произошло, идет понимание плюсов и минусов как автономных устройств, так и систем ЦТ.

Необходимо максимально использовать имеющиеся возможности теплофикационных

систем крупных городов, развивать их, включая меры государственного регулирования для обеспечения коммерческой эффективности теплофикации.

Дисбалансы энергопотребления в рамках мегаполиса вполне можно прогнозировать и нейтрализовывать при комплексном территориальном подходе к городскому хозяйству как единому механизму жизнеобеспечения, если не видеть в нем только отраслевые структуры и интересы, и не выделять и приватизировать частные обособленные участки для извлечения прибыли, без поддержания состояния полной работоспособности и надлежащей технологической модернизации. Очевидно, что никакие частные решения автономного энергообеспечения не спасут ситуацию. Необходимо повышение устойчивости энергетических инфраструктур с помощью разнообразных энерготехнологических агрегатов и систем. Взаимоувязка и согласование режимов выработки и потребления энергоресурсов никак не подразумевает отказа от единых городских систем жизнеобеспечения, наоборот, они стыкуются с возможными автономными агрегатами таким образом, чтобы обеспечить максимальную эффективность энергоиспользования, надежность и экологическую безопасность.

Литература

1. Гашо Е.Г. Особенности и противоречия функционирования систем теплоснабжения и пути их рационализации //Новости теплоснабжения. 2003. № 10. С. 8-12.

2. Скоробогаткина М. Центральное и автономное отопление // Коммунальный комплекс России. 2006. № 9.

3. Москва - Берлин // Энергонадзор и энергоэффективность. 2003. № 3.

4. Байдаков С.Л., Гашо Е.Г., Анохин С.М. ЖКХ России, www. rosteplo. ru.

5. Клименко А.В., Гашо Е.Г. Проблемы повышения эффективности коммунальной энергетики на примере объектов ЖКХ ЦАО г. Москвы //Теплоэнергетика. 2004. №6.

6. Богданов А. Б. Котельнизация России - беда национального масштаба (ч. 1-3), www.сайт.

7. Шабанов В.И. Кольцевая система кондиционирования воздуха в гостинице // АВОК. 2004. № 7.

8. Автономов А. Б. Положение в области систем централизованного теплоснабжения в странах Центральной и Восточной Европы//Электрические станции. 2004. № 7.

9. Гагарин В. Г. Экономические аспекты повышения теплозащиты ограждающих конструкций зданий в условиях «рыночной экономики» // Новости теплоснабжения. 2002. №1.С.3-12.

10. Reich D., Тутунджян А.К., Козлов С.А. Теплонасосные климатические системы - реальное энергосбережение и комфорт// Энергосбережение. 2005. № 5.

11. Кузнецова Ж. Р. Проблемы теплоснабжения и подходы к их решению на региональном уровне (на примере Чувашской Республики) // Новости теплоснабжения. 2002. №8. С. 6-12.

12. Лапин Ю.Н., Сидорин А.М. Климат и энергоэффективное жилище // Архитектура и строительство России. 2002. № 1.

13. Реформа муниципальной энергетики - проблемы и пути решения / Под ред. В.А. Козлова. - М., 2005.

14. Пузаков В.С. О комбинированной выработке тепла и электроэнергии в странах Европейского союза // Новости теплоснабжения. 2006. № 6. С. 18-26.

Если рассматривать жилой дом как энергопотребляющий объект, то доля теплопотерь в нем в зимний период составляет: через неутепленные или разбитые окна и двери подъездов - 24, через стены - 26, через подвал, перекрытия, лестничные клетки -11, через вентиляционные отверстия и дымоходы -39 % 2 .

Теплопотери происходят не только через стены здания. Они могут иметь место во время аварий на трассах и на тепловых узлах жилых домов.

Большое количество тепловой энергии уходит из-за некачественного строительства: щели у оконных рам, швы между панелями, крыши и т. п., а также в домах со вставленными обогревательными устройствами в стенах (на 30 % больше, чем с обычными отопительными приборами). До 15-20 % тепловой энергии теряется в тепловых сетях, свидетельством чего является зеленая трава, растущая зимой над теплотрассами.

Такое положение с использованием тепла в быту явилось следствием существовавшей в нашей бывшей великой стране концепции о том, что полезных ископаемых, в том числе и топливно-энергетических ресурсов, в нашей стране хватит не только на нынешнее, но и грядущие поколения. И при проектировании жилых домов никогда не считалась стоимость их эксплуатации, поэтому и строили относительно дешевые, но холодные дома.

На коммунально-бытовые нужды в Республике Беларусь расходуется примерно 65 % тепловой энергии. В то же время потери тепла при производстве и передаче тепловой энергии в отопительных котельных республики достигает 30 %. На 1 м 2 отапливаемой площади в нашей стране затрачивается в 2 раза больше условного топлива, чем в Германии и Дании.

Годовой расход тепловой энергии в нашей стране на отопление и вентиляцию 1 м 2 общей площади в 5-этажном доме составляет 150-170 кВт, в Скандинавских странах - 70-90 Вт. На Западе после энергетического кризиса 1972-1973 и 1995 г. передовые европейские страны уменьшили расход тепловой энергии на отопление жилых домов в 2 раза. А это не только экономия денежных средств, но и, главное, - изменение самого мышления граждан и руководителей.

Согласно санитарным нормам 3 горячая вода в квартиры должна подаваться не ниже 50 °С, подается же она при температуре 37... 38 °С. Температура воздуха в квартире должна поддерживаться на уровне 18... 20 °С (комфортная зона), а на кухнях 4 - 16... 18 °С. Семья оплачивает лишь 16-17 % от общих затрат на отопление дома, а от стоимости вырабатываемой тепловой и электрической энергии - лишь 20 %. При такой существующей системе оплаты за потребляемые тепло- и электроэнергию добиться радикального изменения улучшения дела в бытовом секторе будет трудно до тех пор, пока жильцы не будут экономически заинтересованы в экономии тепловой энергии. А для этого предстоит переломить психологию всех граждан по отношению к экономии тепла, воды, газа. Весь европейский опыт показывает, что только продуманная непрерывная система воспитания и образования позволяет получить реальные результаты в энергосбережении в бытовом секторе и производственной сфере. На Западе, в частности в Германии, 78 % всего жилья получает тепло от местных котельных, стоимость единицы которого составляем 0,05 DM/кВт * ч, в то время как при централизованном теплоснабжении это: показатель составляет 0,08. Имеющийся в нашей стране опыт децентрализованного теплоснабжения показывает высокую его эффективность. Местные котельные, построенные в столице (гостиница «Беларусь», несколько жилых домов и т. п.), окупают себя за 1,5-3 года 5 . В 1998 году для обеспечения нужд страны было произведено 77 млн Гкал, в 1999 году - 70 млн Гкал тепловой энергии. Для того чтобы удовлетворить потребность республики в год достаточно 50 млн Гкал.

Придавая важное значение энергосбережению в жилищно-коммунальном секторе экономики, Президент Республики Беларусь А. Г. Лукашенко дал 13 июня 2001 года поручение облисполкомам и Минскому горисполкому совместно с заинтересованными министерствами и ведомствами осуществить 1еры по повышению эффективности жилищного строительства, снижению затрат на развитие инженерно-транспортной и социальной инфраструктур за счет уплотнения застройки, применения локальных источников теплоэнерии, автономных систем отопления, водоснабжения и канализации".

Одним из технических решений сокращения сети теплоснабжения и экономии тепловой энергии является децентрализованная выработка тепла при помощи автоматизированных автономных, в т. ч. и крышных, котельных, (работающих на газовом топливе. Преимущество этого вида теплоснабжения состоит в следующем: возможность построить котельную, удовлетворяющую потребность именно данного здания; экономия земельного участка; экономия энергии за счет отсутствия потерь; возможность контроля теплоты и топлива; установка необходимого режима расхода теплоты в зависимости от продолжительности рабочего дня и температуры наружного воздуха; высокий КПД (90 %) котельных установок; более низкие температуры и давления теплоносителя, что повышает долговечность систем теплоснабжения.

Системы отопления жилых и общественных зданий являются одними из самых значительных потребителей тепловой энергии. Расход тепловой энергии на эти цели составляет более 30 % энергоресурсов, потребляемых народным хозяйством. При этом многоквартирные дома, построенные в 1950-1960 годы расходуют на нужды отопления от 350 до 600 кВт * ч на 1 м 2 . Для сравнения укажем, что этот показатель составляет в Германии 260 кВт * ч, в Швеции и Финляндии - 135 кВт * ч 3 .

Наиболее перспективными направлениями энергосбережения являются внедрение автономных систем тепло- и энергоснабжения, устройство напольного отопления, а также установок, использующих возобновляемые источники энергии и теплоутилизаторов.

Автономные системы теплоснабжения в виде мини-котельных становятся перспективными в тех местах, где в качестве топлива используется природный газ. Они и с экологической точки зрения способствуют улучшению состояния воздушного бассейна, т. к. из-за снижения количества сжигаемого газа уменьшается количество дымовых газов, а газовые выбросы содержат в 2-3 раза меньше вредных веществ в 1 м 3 , чем крупные районные котельные. Но децентрализованное теплоснабжение на базе небольших индивидуальных котельных является эффективным при малой плотности тепловой нагрузки (одно-, двухэтажные застройки в сельских и других населенных пунктах).

Естественно, при существующих развитых тепловых сетях централизованного теплоснабжения необоснованно говорить о повсеместном переходе на автономные котельные. Но внедрение их возможно в следующих случаях:

При строительстве новых и реконструкции старых зданий в районах, где прокладка тепловых сетей технически невозможна;

Для обеспечения теплом объектов, не допускающих перепадов в теплоснабжении (школы, больницы), или потребителей, несущих из-за отсутствия тепла большие экономические потери (гостиницы);

При обеспечении теплом потребителей, распложенных на концевых участках существующих тепловых сетей и испытывающих недостаток тепла из-за низкой пропускной способности тепловых сетей или недостаточной! перепада давления между прямой и обратной магистралями;

При строительстве объектов в небольших городах, где централизованное теплоснабжение развито слабо, а отдельные объекты вводятся разрозненно.

Основным элементом автономной энергоустановки являются комбинированные газовые настенные водонагреватели, в корпусе которых находится бесшумный циркуляционный насос и мембранный расширитель. Горячая вода от водонагревателя по металлическим трубам, укладываемым в бетонной подготовке пола или в плинтусе специальной конструкции, разводится по комнатам.

Опыт эксплуатации 72-квартирного девятиэтажного жилого дома в микрорайоне № 17г. Гомеля с этой принципиально новой для нашей страны системой теплоснабжения, разработанной институтом «Гомельгражданпроект», показал ее надежность и экономичность. Так, за ноябрь 1999 г. проживающая в трехкомнатной квартире семья в составе 4 человек на отопление-горячее водоснабжение и приготовление пищи израсходовала 150 м 3 газ;: Причем треть этого количества израсходована непосредственно на кухне Выполненные расчеты показали, что при традиционной системе теплоснабжения аналогичной квартиры от общедомовой системы с подключением к внешнему источнику для целей отопления и горячего водоснабжения потребовалось бы около 500 м 3 газа.

Высокая эффективность работы предложенной системы поквартирного отопления достигнута благодаря:

Сравнительно высокому КПД газовых водонагревателей (« 85 %);

Исключению потерь тепла за пределами квартир;

Отсутствию перерасхода тепла в межсезонные периоды (по имеющимся данным, он составляет до 20 %);

Возможности поквартирного учета и покомнатного регулирования температуры внутри квартиры.

Кроме того, система поквартирного отопления и горячего водоснабжения существенно уменьшила количество приборов учета. Вместо используемых в настоящее время счетчиков газа, отопления, горячего и холодного водоснабжения достаточно установить только два прибора для учета расхода газа и холодной воды. Кроме того, отпадает необходимость в прокладке наружных тепловых сетей. Пожалуй, одно из самых главных преимуществ этой системы отопления перед традиционной состоит в том, что она дает возможность владельцу квартиры создать комфортную температуру воздуха не посредством открывания форточки и оконной створки, а с помощью регулировочного краника с ручным управлением или автоматической термостатической головкой, экономя тем самым свои деньги на отопление квартиры и государственные энергоресурсы.

Экономия расхода теплоты за счет перечисленных выше преимуществ поквартирного отопления достигает 30 % в год.

Возведение жилых домов с подобной системой инженерного обеспечения весьма оправдано в районах существующей городской застройки, где отсутствуют резервные мощности действующих централизованных источников теплоснабжения.

Опыт работы автономных котельных показывает, что они надежны и экономичны. При теплоснабжении от этих котельных потребитель получает тепловую энергию по тарифам, в 3 раза ниже действующих. За счет этого строительство таких котельных окупается практически за один сезон.

Во всех промышленно и энергетически развитых странах наблюдается очень быстрый рост применения электроотопления, выполняемого, как, правило, путем укладки нагревательных кабелей в пол. Применение электроотопления допускается СНИП 2.04.05-91. Для помещений с постоянным пребыванием людей установлено, что средняя температура подогреваемого пола не должна превышать 26°С, а для дорожек вокруг бассейнов - не большe 30°С. Одной из таких систем электроотопления является кабельная система Теплолюкс. Она устанавливается в толще пола, что превращает всю обогреваемую поверхность в источник тепла, температура которого лишь на несколько градусов превышает температуру воздуха. Эта система, как и другие, подобные ей, используется как основная в отдельно стоящих зданиях, коттеджах и в тех случаях, когда нет возможности выполнить подключение центрального водяного отопления. Она может применяться как дополнительная система отопления (совместно с другими) для получения комнатной температуры.

Совершенно новый способ отопления помещений различного назначения разработан в БИТУ профессором В.П. Лысовом. Созданная им полимерная греющая электропроводка, состоящая из сотен тончайших полимерных волокон, обработанных по оригинальной технологии специальным раствором и соединённых в пучок, обеспечивает при одинаковом расходе электроэнергии гораздо более высокий, чем у металлического проводника, рост температуры, поскольку волокна постоянно греют друг друга. Эту проводку, а точнее, комплект проводов раскладывают по схеме на подготовленные бетонное основание и цементируют. Можно размещать провода и под плиткой, различными линолеумами, ковровыми покрытиями, под дощатым настилом и паркетом. В любом случае будет обеспечена рекомендованная медиками температура пола 25 °С, а воздуха 20... 22 °С. Для надежности можно включить в сеть и автоматический терморегулятор.

Затраты на отопление и эксплуатацию этим способом в 1,5-2 раза ниже по сравнению с другими известными способами, в том числе и аналогичными зарубежными системами греющего пола, где используются металлические проводники. Но недостаток металлических проводников - сопровождающие его нежелательные для организма вихревые токи. Полимерный проводник генерирует электромагнитное поле в 2-10 раз более слабое, которое и близко не подходит к нижнему пределу.

Сфера применения этого способа обогрева очень широка: дома, квартиры, офисы, животноводческие помещения и др. Достоинства его оценены многими владельцами собственных домов, руководителями, но особенно довольны руководители совхозов, где новинка применяется уже 3 года и, кроме экономии энергоресурсов на отопление, во многом способствует сохранению поголовья скота и их привесу. Согласно проведенным учеными БелНИИ животноводства исследованиям мест содержания животных с обогреваемыми полами установлено, что сохранность и привесы поросят повышаются, при этом расход электроэнергии сокращается с 250 Вт при ламповом обогреве до 120-130 Вт при обогреваемых полах на 1 ското-место. Такой способ обогреваемых полов внедрен во многих хозяйствах страны.

Простоту устройства и эксплуатацию греющих полов, невысокую стоимость и расход электроэнергии в сравнении с традиционными технологиями обогрева оценили владельцы более 1,5 тысяч квартир и частных домов, дач и гаражей, офисов и магазинов республики, повысив себе комфортность проживания и труда. К этому следует добавить, что расходы по обустройству обогрева составляют 10-12 долларов США и компенсируются достигаемой экономией за 5-6 месяцев эксплуатации в холодное время года.

Для обеспечения общественных, жилых и производственных помещений дешевым теплом с использованием местных видов топлива экономически выгодно применять воздушное отопление на базе теплогенераторов.

Повышение эффективности тепловых сетей - актуальная и важная задача для российской теплоэнергетики. В энергохозяйстве предприятий и муниципальных образований наиболее малонадёжным и изношенным элементом являются тепловые сети.

Традиционно им уделяется недостаточное внимание, а низкий уровень культуры эксплуатации, воздействие внешних факторов (в том числе таких, как вандализм) и плохое качество первоначального строительства, объясняет их ужасное состояние в настоящий момент. На них часто случаются аварии, это приводит к отказам в теплоснабжении конечных потребителей.

Среди неспециалистов распространено мнение, что эксплуатация тепловых сетей является простым и бесхитростным занятиям. Такой подход приводит к недостатку внимания, уделяемого вопросам эксплуатации. Поэтому, состояние тепловых сетей, как элемента всей инфраструктуры теплоснабжения, находится в весьма удручающем состоянии. Это приводит к большим потерям энергии, когда в теплотрассах теряется до 80% передаваемого тепла. Естественно, приходится повышать температуру теплоносителя, усиленно расходовать топливо, из-за чего несоразмерно вырастают затраты.

Зачастую бывает так, что по мере расширения производств или роста населенного пункта, существующая теплосеть перестаёт удовлетворять необходимым потребностям. Иногда при обследовании сетей выявляются ошибки проектирования и недочёты выполнения строительных работ. В тепловых сетях со сложной структурой возможно проведение мероприятий по её оптимизации, что позволяет сократить затраты.

На практике именно модернизация тепловых сетей приносит наиболее ощутимые результаты. Это обуславливается их очень плохим состоянием. Зачастую, теплосети находятся в столь изношенном виде, что модернизация котельных и тепловых пунктов не даёт должного эффекта. Однако, в таких случаях одним лишь повышением эффективности работы тепловых сетей удаётся существенно поднять качество теплоснабжения и снизить операционные затраты.

Технологии строительства и эксплуатации тепловых магистралей не стоят на месте. Появляются новые виды труб, арматуры, начинают использоваться новые теплоизоляционные материалы. В результате ситуация начинает потихоньку исправляться.

Проектирование, строительство, эксплуатация и модернизация теплотрасс является сложной и зачастую нетривиальной задачей. При осуществлении этой деятельности необходимо учитывать множество факторов, таких как особенности конкретной инфраструктуры и специфику режимов работы теплосети. Всё это предъявляет высокие требования к инженерно-техническому персоналу, осуществляющему данный процесс. Необоснованные и неграмотные решения могут привести к авариям, которые обычно случаются в периоды наибольшей нагрузки на теплосеть - во время зимнего отопительного сезона.

Для поддержания в рабочем состоянии теплопроводов может быть проведено множество мероприятий: от их утепления и устранения влияния негативных внешних воздействий, до промывки тепловой системы от накопившейся грязи. Если мероприятия выполнены грамотно, то их результат сразу же начинает чувствоваться в домах и офисах потребителей виде повышения температуры радиаторов системы отопления.

Проведение ремонтных, модернизационных и эксплуатационных мероприятий на теплосетях является необходимой деятельностью со стороны эксплуатирующих организаций и собственников теплосетей. Если они проводятся вовремя и выполняются качественно, то это позволяет существенно продлить срок службы теплосети, а также значительно сократить количество возникающих аварий.

Специалисты группы компаний «Инвенсис» имеют необходимые компетенции и большой опыт по «оживлению» сетей теплоснабжения. Мы поможем реанимировать ваши теплосети и снизить расходы на отопление и обслуживание инфраструктуры. Наши специалисты готовы провести аудит теплосетей, выработать перечень необходимых ремонтно-восстановительных мероприятий, осуществить их, провести проектные и строительно-монтажные работы, а также работы по пуско-наладке оборудования, осуществить обслуживание.

При выполнении проектов по строительству, модернизации и обслуживанию теплосетей группой компаний «Инвенсис» особое внимание уделяется качеству выполняемых работ, удовлетворению пожеланий заказчиков и получению положительного итогового результата.

В этой статье продолжаем начатую тему о системе отопления частного дома своими руками. Мы уже узнали как работает такая система, поговорили о том, какой тип выбрать, теперь поговорим о том как повысить эффективность.

Так, что же надо сделать, чтобы ее эффективность была выше.

Нам необходимо, чтобы теплоноситель внутри двигался в нужном нам направлении и в нужном количестве с большей скоростью, при этом отдавая больше тепла. Жидкость в системе должна двигаться быстрее не только по трубопроводу, но и по батареям подключенным к нему. Поясню принцип работы на примере двухтрубной системы с нижней разводкой.

Для того, чтобы вода поступала в батареи подключенные к трубе, надо в конце этой трубы подачи сделать тормоз, то есть увеличить сопротивление движению. Для этого на конце (измерение нужно вести от входа в крайний радиатор) устанавливаем трубу меньшего диаметра.

Для того, чтобы переход был плавным, их необходимо устанавливать в таком порядке: Если вход в радиатор 20 мм (стандарт для батарей нового образца), значит труба подвода (отвод для радиаторов) должна быть не менее 25 миллиметров.

Затем она плавно, через 1-2 метра, переходит в трубу диаметр которой равен 32 миллиметра, далее по такой же схеме – 40 миллиметров. Все остальное расстояние системы или ее крыла будет составлять труба подачи диаметром 40-60 мм или больше.

В это случае, когда котел включен, теплоноситель начинает движение по системе и встретив на своем пути сопротивление, начнет двигаться и в другие всевозможные направления (в радиаторы), выравнивая общее давление.

Мы таким образом увеличили эффективность работы подающей трубы и первой половины системы. А что же происходит в другой половине, которая является как бы отражением первой.

А раз это зеркальное отражение, то и процессы в ней происходят с точностью до наоборот: в подающей трубе обратки давление уменьшается (за счет понижения температуры жидкости и увеличения диаметра) и появляется эффект всасывания, помогающий начальному давлению увеличить скорость движения воды не только в трубопроводе, но и в батареях отопления.




Повысив эффективность вы не только сделаете свой дом теплее, но и сэкономите не мало средств.

Видео: Тепло в доме — отопление: Повышение КПД батареи / радиатора водяного отопления



Loading...Loading...