Термины и полезная справочная информация по насосам и насосному оборудованию. Гидравлические характеристики насосных систем соединенных насосов на простой трубопровод

Характеристикой трубопровода называется зависимость суммарной потери напора (или давления) в трубопроводе от расхода:

Σ h = f(q)

Таким образом, характеристика трубопровода представляет собой кривую потребного напора, смещенную в начало координат. Характеристика трубопровода совпадает с кривой потребного напора при Н ст =0.

Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 6.1), имеет общую длину l и диаметр d , а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z 1 и избыточное давление Р 1 , а в конечном сечении 2-2 - соответственно z 2 и Р 2 . Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна ν.

Рис. 6.1. Схема простого трубопровода

Запишем уравнение Бернулли для сечений 1-1 и 2-2 . Поскольку скорость в обоих сечениях одинакова и α 1 = α 2 , то скоростной напор можно не учитывать. При этом получим

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Н потр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Н расп. Такой напор складывается из геометрической высоты H потр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

а последнее слагаемое Σh - как степенную функцию расхода

Σ h = KQm

H потр = H ст + KQ m

где K - величина, называемая сопротивлением трубопровода;
Q - расход жидкости;
m - показатель степени, который имеет разные значения в зависимости от режима течения.


Понятия, смысл которых не раскрывается в пособии, разъясняются здесь.

Абсолютное давление
Абсолютное давление - это отношение силы, действующей на бесконечно малую поверхность к площади этой поверхности:

Где dF – сила, действующая на бесконечно малую поверхность, dS – бесконечно малая площадь поверхности.
В системе СИ абсолютное давление выражается в [Н/м 2 ] или [Па].

Атмосферное давление
Атмосферное давление - это абсолютное давление, создаваемое атмосферой. Величину атмосферного давление определяют с помощью барометров, поэтому второе название ему – барометрическое.

Вакууметр
Вакууметр - прибор для измерения давления ниже атмосферного. Наибольшее распространение на практике получили механические пружинные вакууметры. В силу специфики своего устройства, механические вакууметры показывают не абсолютное давление, а разрежение (вакуум), т.е. величину, на которую абсолютное давление меньше чем атмосферное.

Высота всасывания
Высота всасывания - расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

Геометрический напор
В узком понимании геометрический напор - это высота подъема жидкости, т.е. расстояние по вертикали от уровня жидкости в расходном резервуаре до уровня в приемном резервуаре.
В более широком понимании геометрический напор – это вертикальное положение некоторого сечения, выделенного в жидкости над произвольно выбранной плоскостью отсчета.

Диафрагма
Диафрагма - устанавливаемое в трубопроводе техническое устройство со сквозным отверстием для создания и отбора перепада давления среды путем местного уменьшения сечения трубопровода (сужение потока), применяющееся совместно с дифманометром для измерения расхода жидкости в трубопроводе.

Дифманометр (дифференциальный манометр)
Дифманометр - прибор для измерения разницы (перепада) давления в двух различных точках пространства, применяющийся для определения расхода жидкости или газа в трубопроводах, а также уровня жидкости в резервуарах.

Задвижка
Задвижка - трубопроводная арматура, запирающий элемент которой перемещается возвратно-поступательно перпендикулярно направлению потока жидкости. Задвижки используются для полного перекрытия трубопровода. Реже задвижки используются для регулирования подачи (расхода) жидкости за счет частичного перекрытия трубопровода.

Избыточное давление
Избыточное давление - это разница между абсолютным и атмосферным (барометрическим) давлением при условии, что абсолютное давление больше атмосферного:

,

Где p изб – избыточное давление; p – абсолютное давление; p атм – атмосферное давление.
Величину избыточного давления измеряют при помощи манометров.

Кавитация
Кавитация - образование и схлопывание пузырьков пара в потоке жидкости. Кавитация возникает в том случае, когда абсолютное давление в потоке жидкости снижается до давления ее насыщенного пара. Кавитация – крайне нежелательное явление при эксплуатации насосов, поскольку оно сопровождается вибрацией элементов насоса и трубопровода, разрушением рабочих органов насоса.

Коэффициент местного сопротивления x
Коэффициент местного сопротивления используется для определения потерь напора на местных гидравлических сопротивлениях (задвижки, отводы, фильтры, клапаны и т.д.). Он зависит в общем случае от типа сопротивления, диаметра трубопровода, режима течения. Численные значения коэффициента местного сопротивления приведены в справочной литературе. [3,4 ]

Коэффициент трения l
Коэффициент трения используется для определения потерь напора на гидравлическом трении. Он зависит в общем случае от режима течения, шероховатости трубопровода и диаметра трубопровода. Для определения коэффициента трения можно использовать следующие формулы:

Формула Применимость Область трения
Ламинарное течение
Гидравлически
гладкие трубы
Гидравлически
шероховатые трубы
Автомодельная
(квадратичная)
область

где d – диаметр трубопровода [м]; е – абсолютная шероховатость материала труб [м].

Критерий Рейнольдса Re
Критерий Рейнольдса характеризует режим течения жидкости и определяется по формуле:

Где W – скорость течения жидкости [м/с]; d – диаметр трубопровода [м]; r - плотность жидкости [кг/м 3 ]; m - коэффициент динамической вязкости жидкости [Па. с].
Скорость жидкости можно определить через расход и площадь поперечного сечения потока:

Если поток течет чере трубу круглого сечения с диаметром d, то площадь поперечного сечения равна:

.

По численному значению критерия Рейнольдса можно судить о режиме (характере) течения жидкости:

Жидкость течет в ламинарном режиме. Ламинарному режиму течения свойственно движение частиц жидкости по траекториям, параллельным общему направлению потока.
Жидкость течет в переходном (слабо развитом турбулентном) режиме. Этому режиму свойственно появление вихрей. Вихрь – это движение группы частиц по вращательной траектории. За счет вихрей поток жидкости перемешивается в поперечном направлении. Чем ближе значение критерия Рейнольдса к 10000, тем больше вихрей.
Жидкость течет в турбулентном режиме. Турбулентный режим сопровождается возникновением большого количества вихрей, перемешивающих жидкость.

Мановакууметр
Мановакууметр - прибор для измерения давления. Мановакууметр имеет две шкалы. Одна шкала используется для определения избыточного давления, а другая для определения вакуума. Такие приборы используются в том случае, когда давление, которое нужно определить, может быть как выше, так и ниже атмосферного.

Манометр
Манометр - прибор для измерения давления выше атмосферного. Наибольшее распространение на практике получили механические пружинные манометры. В силу специфики своего устройства, механический манометр, показывает не абсолютное давление, а избыточное давление, т.е. величину, на которую абсолютное давление больше чем атмосферное.

Обратный клапан
Обратный клапан - элемент трубопровода, допускающий прохождение жидкости только в одном направлении.

Разрежение (вакуум)
Разрежение - это разница между атмосферным (барометрическим) и абсолютным давлением при условии, что абсолютное давление меньше атмосферного:

,

Где p вак – разрежение; p – абсолютное давление; p атм – атмосферное давление. Величину разрежения измеряют при помощи вакуумметров.

Статический напор
При рассмотрении трубопроводной сети статическим напором называют энергию, отнесенную к 1 Н жидкости, которую необходимо затратить, для того, чтобы жидкость поддерживалась неподвижно в трубопроводной сети. Статический напор простейшей трубопроводной сети определяется по формуле:

,

Где H г – геометрический напор; P 2 – давление в приемном резервуаре; P 1 – давление в расходном резервуаре.
Не трудно заметить, что чем больше давление в приемном резервуаре, т.е. резервуаре, куда должна перекачиваться жидкость, тем больший статический напор нужно обеспечивать, чтобы противодействовать этому давлению.

  • плотность (“тяжесть” жидкости)
  • давление насыщенных паров (температура кипения)
  • температура
  • вязкость (“густоту” жидкости)
2. Объем, который необходимо по­дать (расход) 3. Высота всасывания:разница в уровне между насосом и точкой забора жидкости 4. Высота нагнетания: разница в уровне между насосом и наивысшей точкой, в которую пода­ется жидкость 5. Потери давления на всасывании (потери на трение) 6. Потери давления в напорном тру­бопроводе (потери на трение) 7. Конечное избыточное давление 8. Начальное избыточное давление Когда все эти данные известны, мож­но определить режим работы насоса и выбрать его оптимальную модель.

Характеристики жидкости

Для выбора оптимального насоса необходимо иметь полную инфор­мацию о характеристиках той жид­кости, которая должна подаваться потребителю. Естественно, что “более тяжелая” жидкость потребует больше затрат энергии при перекачивании данного объема. Чтобы описать, насколько одна жидкость “тяжелее” другой, ис­пользуется такое понятие, как “плот­ность” или “удельный вес”; этот па­раметр определяется как масса (вес) единицы объема жидкости и обычно обозначается как “ρ” (греческая бук­ва “ро”). Измеряется в килограммах на кубометр (кг/м 3). Любая жидкость при определенных температуре и давлении стремится испариться (температура или точка начала кипения); повышение давле­ния вызывает повышение температуры и наоборот. Таким образом, при более низком давлении (даже воз­можно при вакууме), которое может иметь место со стороны всасывания насоса, жидкость будет иметь более низкую температуру кипения. Если она близка или в особенности ниже текущей температуры жидкости, воз­можно образование пара и возник­новение кавитации в насосе, что в свою очередь может иметь отрица­тельные последствия для его харак­теристик и способно вызвать серьез­ные повреждения (смотрите главу о кавитации). Вязкость жидкости вызывает потери на трение в трубах. Численное значе­ние этих потерь можно получить у из­готовителя конкретного насоса. Необходимо учитывать, что вязкость “густых” жидкостей, таких как масло, с ростом температуры падает. Расход воды Он определяется как объем, кото­рый должен быть подан за указанное время, и обозначается как “Q”. При­меняемые единицы измерения: как правило, это литры в минуту (л/мин) для насосов небольшой мощности/ производительности, кубометры в час (м 3 /ч) для насосов средней про­изводительности и, наконец, кубоме­тры в секунду (м 3 /с) для самых мощ­ных насосов. Размеры поперечного сечения тру­бопровода определяются объемом, который должен быть подан потре­бителю при данной скорости потока жидкости “v”:

Геодезическая (статическая) высота всасывания

Она определяется как разница в гео­дезическом уровне между впускным патрубком насоса и свободной по­верхностью жидкости в наиболее низ­ко расположенном резервуаре, изме­ряется в метрах (м) (рис. 3, поз. 1).

Статическая высота подачи (статический напор)

Она определяется как разница в гео­дезическом уровне между выпуск­ным патрубком и наивысшей точкой гидросистемы, в которую необходи­мо подать жидкость (рис. 3, поз. 2).

Потери давления на всасывании

Это потери на трение между жидкос­тью и стенками трубопровода и за­висят от вязкости жидкости, качества шероховатости поверхности стенок трубопровода и скорости потока жидкости. При увеличении скорости потока в 2 раза потери давления воз­растают во второй степени (рис. 4, поз. 1). Информацию о потерях давления в трубопроводе, коленах, фитингах и т.п. при различных скоростях потока можно получить у поставщика. Потери давления в напорном трубопроводе Смотрите описание, приведенное выше (рис. 4, поз. 2).

Конечное избыточное давление

Это давление, которое необходимо иметь в той точке, куда должна пода­ваться жидкость (рис. 5, поз. 1).

Начальное избыточное давление

Это давление на свободной поверх­ности жидкости в месте водозабора. Для открытого резервуара или бака это просто атмосферное (бароме­трическое) давление (рис. 5, поз. 2).

Связь между напором и давлением

Как можно видеть из рис. 6, столб воды высотой 10 м оказывает такое же давление, что и столб ртути (Hg) высотой 0,7335 м. Умножив высоту столба (напор) на плотность жидко­сти и ускорение свободного падения (g), получим давление в ньютонах на квадратный метр (Н/м 2) или в паска­лях (Па). Поскольку это очень незна­чительная величина, в практику экс­плуатации насосов ввели единицу измерения, равную 100000 Па, наз­ванную баром. Уравнение на рис. 6 можно решить в метрах высоты столба жидкости: Таким образом, высоту столба жид­костей с различной вязкостью можно привести к эквивалентной высоте во­дяного столба. На рис. 7 приводятся коэффициенты преобразования для множества различных единиц изме­рения давления. Ниже показан пример расчета общего гидравлического напора со схемой установки насоса.
Гидравлическая мощность (P hyd) насо­са определяет объем жидкости, пода­ваемой при данном напоре за данное время, и может быть рассчитана с по­мощью следующей формулы:

Пример

Объем в 35 м 3 воды за час должен быть перекачан из колодца глубиной 4 м в бак, размещенный на высоте 16 м относительно уровня установки насоса; конечное давление в баке должно быть 2 бара. Потери напора на трение во всасывающем трубопро­воде принимаются равными 0,4 м, а в напорном трубопроводе составляют 1,3 м включая потери в коленах. Плотность воды предположительно составляет 1000 кг/м 3 и значение уско­рения свободного падения 9,81 м/с 2 . Решение: Общий напор (H): Высота всасывания - 4,00 м Потери напора на всасывании - 0,40 м Высота нагнетания - 16,00 м Потери давления в напорном трубопроводе - 1,30 м Конечное давление: - 2 бара*~20,40м Минус 1 атм**~ -9,87 м Общий напор - 32,23 м Гидравлическая мощность определя­ется по формуле: * В данном примере конечное из­быточное давление дано как абсо­лютное давление, т.е. как давление, измеренное относительно абсолют­ного вакуума. ** Если конечное избыточное давле­ние дано как абсолютное, то началь­ное избыточное давление необходи­мо вычесть, поскольку это давление “помогает” насосу всасывать жид­кость. Вода через всасывающий патрубок насоса попадает на вход рабочего колеса и под действием вращаю­щихся лопаток испытывает положи­тельное ускорение. В диффузоре кинетическая энергия потока преоб­разуется в потенциальную энергию давления. В многоступенчатых насо­сах поперечное сечение диффузора со встроенными неподвижными ло­патками называют “направляющим аппаратом”. Из схемы на рис. 10 видно, что потенциальная энергия в виде давле­ния в насосе растет в направлении от всасывающего к напорному па­трубку, поскольку гидродинамиче­ское давление, создаваемое рабо­чим колесом (кинетическая энергия скорости потока), преобразуется в потенциальную энергию давления в диффузоре.

Рабочие характеристики насоса

На рис. 11 представлена типичная эксплуатационная характеристика центробежного насоса “Q/H”. Из нее видно, что максимальное дав­ление нагнетания достигается, когда подача насоса равна нулю, т.е. когда напорный патрубок насоса закрыт. Как только поток в насосе возраста­ет (увеличивается объем перекачи­ваемой жидкости), высота нагнета­ния падает. Точная характеристика зависимости подачи Q от напора H определяет­ся изготовителем опытным путем на испытательном стенде. Например (рис. 11), при напоре H 1 насос бу­дет подавать объем Q 1 и аналогично при H 2 - Q 2 .

Эксплуатационная характеристика насоса

Как уже было показано выше, поте­ри напора на трение в трубопроводе зависят от качества шероховатости поверхности стенок трубопровода, и квадрата скорости потока жидкости и, конечно же, от протяженности тру­бопровода. Потери давления на трение можно представить на графике “H/Q” как кри­вую характеристики гидросистемы. В случае замкнутых систем, таких как системы центрального отопле­ния, текущая высота нагнетания мо­жет не учитываться, поскольку она уравновешивается положительным напором со стороны всасывающего патрубка.
Потери давления [Па/м] при температуре t = 60°C. Рекомендуемые потери в трубах – не более 150 Па/м.

Рабочая точка

Рабочая точка – это точка пересече­ния графика характеристики насоса с графиком характеристики гидроси­стемы. Понятно, что любые изменения в гидросистеме, например измене­ние проходного сечения клапана при его открытии или образование отложений в трубопроводе, сказы­ваются на характеристики гидроси­стемы, в результате чего положение рабочей точки изменяется. Анало­гичным образом изменения в насо­се, например износ рабочего колеса или изменении частоты вращения, вызовут возникновение новой рабо­чей точки.

Последовательно включенные насосы

Многоступенчатые насосы можно рассматривать как пример последо­вательно включенных одноступенча­тых насосов. Конечно, в этом случае невозможно разобщить отдельные ступени, что иногда бывает желатель­но при проверке состояния насоса. Поскольку неработающий насос соз­дает существенное сопротивление, не­обходимо предусмотреть байпасную линию и обратный клапан (рис. 14). Для работающих последовательно насосов общий напор (рис. 15) при любой заданной подаче определяет­ся суммой значений высоты нагнета­ния каждого отдельного насоса.

Параллельно включенные насосы.

Такая схема монтажа используется с целью обеспечения контроля со­стояния насосов или для обеспече­ния эксплуатационной безопасности, когда требуется наличие вспомога­тельного или резервного оборудо­вания (например, сдвоенные насо­сы в отопительной системе). В этом случае также необходимо устанавли­вать обратные клапаны для каждого из насосов, чтобы предотвратить об­разование противотока через один из неработающих насосов. Этим тре­бованиям в сдвоенных насосах удо­влетворяет переключающий клапан типа заслонки. Для параллельно работающих насо­сов общая подача (рис. 17) опреде­ляется как сумма значений подачи отдельных насосов при постоянном напоре.

КПД насоса

КПД насоса показывает, какая часть механической энергии, переданной насосу через его вал, преобразова­лась в полезную гидравлическую энергию. На КПД влияют:
  • форма корпуса насоса;
  • форма рабочего колеса и диф­фузора;
  • качество шероховатости поверх­ности;
  • уплотнительные зазоры между всасывающей и напорной поло­стями насоса.

Чтобы потребитель имел возмож­ность определить КПД насоса в кон­кретной рабочей точке, большинство изготовителей насосного оборудова­ния прилагают к диаграммам рабо­чих характеристик насоса диаграм­мы с графиками характеристик КПД (рис. 18).

Типовые закономерности

Приведенные далее типовые зако­ номерности демонстрируют тео­ретическое влияние диаметра ( d ) рабочего колеса на напор , подачу и потребляемую мощность . Напор пропорционален диаметру во второй степени: Согласно этой закономерности, удво­ение диаметра повысит напор в 4 раза. Подача пропорциональна диаметру в третьей степени: Согласно этой закономерности, удво­ение диаметра повысит подачу в 8 раза. Потребляемая мощность пропорцио­нальна диаметру в пятой степени: Согласно этой закономерности, удво­ение диаметра повысит потребляе­мую мощность в 32 раза.

Типовые закономерности

Приведенные далее типовые зако­ номерности демонстрируют теоре­ тическое влияние частоты враще­ ния (n) рабочего колеса на напор , подачу и потребляемую мощность . Подача пропорциональна частоте вращения: Согласно этой закономерности, удво­ение частоты вращения в два раза по­высит подачу. Напор пропорционален квадрату ча­стоты вращения: Согласно этой закономерности, удво­ение частоты вращения в 4 раза по­высит напор. Потребляемая мощность пропорци­ональна частоте вращения в третьей степени: Согласно этой закономерности, удво­ение частоты вращения в 8 раз повы­сит потребляемую мощность.

Потребляемая мощность

P 1 : Мощность, потребляемая электро­двигателем из электросети. У электродвигателей, непосредствен­но присоединенных к валу насосов, как это имеет место в приводе цир­куляционных насосов, максимальное значение потребляемой мощности ука­зывается на фирменной табличке с тех­ническими данными. P 1 также можно определить по следую­щей формуле: (3-фазные электродвигатели) (1-фазные электродвигатели) где: V = напряжение (В) I = сила тока (A) cos ϕ = коэффициент мощности (-) P 2 : мощность на валу электродвигателя. В случае, когда электродвигатель и на­сос являются отдельными узлами (вклю­чая стандартные и погружные электро­двигатели), на фирменной табличке указывается максимальная мощность на валу электродвигателя. P 3 : Мощность, потребляемая насосом Текущая нагрузка электродвигателя может быть определена по кривой мощ­ности насоса. В случае непосредствен­ного присоединения электродвигателя к валу насосов: P 3 = P 2 . P 4 : Мощность насоса (P hydraulic) Значение мощности насоса определя­ется по формуле:

Адаптация насосов к переменным режимам эксплуатации

Потери давления в гидросистеме рассчитываются для определенных специфических условий эксплуа­тации. На практике характеристика гидросистемы почти никогда не со­впадает с теоретической из-за коэф­фициентов запаса прочности, закла­дываемых в гидросистему. Рабочая точка гидросистемы с насо­сом – это всегда точка пересечения графика характеристики насоса с графиком характеристики гидроси­стемы, следовательно, подача обыч­но бывает больше, чем требуется для новой гидросистемы. Такое несоответствие может соз­дать проблемы в гидросистеме. В отопительных контурах может воз­никать шум, вызванный потоком, в конденсатных системах – кавитация, а в некоторых случаях неоправданно большая подача приводит к потерям энергии. Вследствие этого возникает необ­ходимость смещения рабочей точки (точки пересечения графиков обоих характеристик) путем регулировки насоса и подстройки гидросистемы. На практике применяют один из ука­занных ниже способов:
  1. Изменение характеристики гид­росистемы путем прикрытия дрос­сельного клапана (дросселирова­ние) (рис. 22).
  2. Изменение характеристики насо­са за счет уменьшения наружно­го диаметра (путем механической обработки) его рабочего колеса (рис. 23).
  3. Изменение характеристики на­соса путем регулировки частоты вращения (рис. 24).

Регулирование подачи с помощью дроссельного клапана

Уменьшение проходного сечения дроссельного клапана в гидроси­стеме вызывает повышение потерь давления (гидродинамического на­пора H dyn), делая кривую характери­стики гидросистемы более крутой, в результате чего рабочая точка сме­щается в направлении более низкой подачи (смотрите рис. 25). В результате снижается потребляе­мая мощность, поскольку центробеж­ные насосы имеют характеристику мощности, которая уменьшается при уменьшении подачи. Однако потери мощности при дроссельном регули­ровании в гидросистеме с высоким значением потребляемой мощности будут значительны, поэтому в таких случаях необходимо проводить спе­циальные расчеты для оценки рен­табельности метода регулирования подачи с помощью дроссельного клапана.

Модификация рабочего колеса

В тех случаях, когда снижение про­изводительности насоса и напо­ра требуется постоянно, наиболее оптимальным решением может стать уменьшение наружного диаметра ра­бочего колеса. При этом протачивают по наружно­му диаметру либо все рабочее коле­со, либо только торцы лопаток. Чем больше будет занижение наружного диаметра, тем ниже станет КПД на­соса. Снижение КПД обычно бывает бо­лее значительно в тех насосах, кото­рые работают на высоких оборотах. У низкооборотных насосов оно не столь заметно, в особенности, если уменьшение наружного диаметра не­значительно. Когда уменьшение наружного диаме­тра незначительно, то с достаточно высокой степенью точности можно воспользоваться следующими соот­ношениями: На рис. 27 представлен способ определения заниженного диаметра D x с помощью диаграммы характе­ристики “H/Q” в линейных координа­тах. Начало координат (Q = 0, H = 0) соединяется с новой рабочей точкой (Q x , H x) прямой линией, продолжен­ной до пересечения с характеристи­кой имеющегося насоса (Q, H) в точ­ке “s”. После этого новый диаметр (D x) рассчитывается по следующей формуле: Однако эти зависимости недействи­тельны в случае необходимости значительного снижения произво­дительности насоса. В таком случае рекомендуется проводить заниже­ние рабочего колеса в несколько этапов. Сначала занижение диаме­тра рабочего колеса выполняется до размера, несколько превышающего значение D x , рассчитываемое как указывалось выше. После этого на­сос подвергается испытаниям, после которых можно определить оконча­тельный диаметр. В серийном производстве этого мож­но избежать. Имеются графики ра­бочих характеристик для насосов, оборудованных рабочими колесами с различным занижением наружного диаметра (смотрите рис. 28), непо­средственно по которым можно рас­считать значение D x , используя выше­указанные формулы.

Регулирование частоты вращения

Изменение частоты вращения вы­зовет изменения в рабочих харак­теристиках центробежного насоса. Воспользуемся типовыми законо­мерностями, указанными ранее:

Кавитация

Наиболее часто встречающиеся при эксплуатации насосов проблемы связаны с условиями всасывания на входе гидросистемы и почти всегда они бывают вызваны слишком низ­ким гидростатическим давлением (подпором) на входе насоса. Причина этого может корениться либо в выборе насоса с неоптималь­ными для данных условий эксплуа­тации параметрами, либо в ошибках, допущенных при проектировании ги­дросистемы. Вращение рабочего колеса отбрасы­вает жидкость к поверхности корпуса насоса, в результате чего со сторо­ны всасывающей полости рабочего колеса возникает разряжение. Это вызывает подсос жидкости через всасывающий клапан и трубопро­вод, которая поступает к рабочему колесу, где она опять отбрасывается к поверхности корпуса насоса. Раз­ряжение на входе насоса зависит от разницы между уровнем положения впускного отверстия и поверхности перекачиваемой жидкости, от потерь давления на трение во всасывающем клапане и трубопроводе, а также от плотности самой жидкости. Это разряжение ограничено давлени­ем насыщенного пара жидкости при данной температуре, т.е. давлением, при котором будут образовываться пузырьки пара. Любая попытка сни­зить гидростатическое давление до величины, меньшей чем давление насыщенного пара, приведет к тому, что жидкость отреагирует на это образованием пузырьков пара, по­скольку она начнет закипать. В насосе кавитация возникает тог­да, когда давление с той стороны лопаток рабочего колеса, которая обращена в сторону всасывающей полости (обычно вблизи впускного отверстия насоса), падает ниже дав­ления насыщенного пара жидкости, вызывая образование пузырьков газа. Будучи перенесенными в об­ласти высокого давления в рабочем колесе, эти пузырьки разрушаются (взрываются), а возникающая при этом волна давления может вызвать повреждение насоса (рис. 31). Это повреждение, которое может возникнуть в течение нескольких минут или через несколько лет, на­столько серьезно, что может отри­цательно подействовать не только на насос, но и на электродвигатель. Наиболее уязвимыми деталями при этом являются подшипники, сварные швы и даже поверхности рабочего колеса. Масштабы повреждений рабочего колеса зависят от характеристик ма­териала, из которого оно изготовле­но; например, из таблицы видно, что при одних и тех же условиях ущерб для рабочего колеса из нержавею­щей стали составляет всего лишь 5% от ущерба, причиненного рабочему колесу из чугуна. Потеря в массе различных материалов (при сравнении за основу взят чугун = 1,0): С явлением кавитации связаны также повышенный уровень шума, падение напора и нестабильность эксплуата­ции. Зачастую повреждение остает­ся не выявленным до тех пор, пока насос и электродвигатель не будут подвергнуты разборке.

Расчеты по устранению опасности кавитации

Кавитационный запас H max насоса, необходимый для устранения опас­ности кавитации, рассчитывается следующим образом: H max: Кавитационный запас насоса (смотрите рис. 33). Если он положительный , насос может работать при данной высоте всасывания. Если он отрицательный , для работы насоса необходимо создать условия, при которых он станет положительным. H b: Атмосферное давление со сто­роны насоса; это – теоретиче­ски максимальная высота вса­сывания. Это значение H b зависит от плотно­сти жидкости и значения “g” со сто­роны насоса (рис. 32). H fs: Потери давления на трение во всасывающем клапане и присо­единенном трубопроводе также зависят от плотности жидкости.

NPSH: N et P ositive S uction H ead

Этот параметр отражает минималь­ное давление на всасывании, не­обходимое для безаварийной экс­плуатации. Он характеризует потери давления на трение на участке от всасывающего патрубка насоса до той точки первого рабочего колеса, в которой давление минимально, и определяет гидравлические условия, при которых насос не в состоянии всасывать цельный водяной столб высотой 10,33 м. Таким образом, зна­чение NPSH будет расти с ростом по­дачи, что можно видеть из графика характеристики на рис. 35 конкрет­ного насоса. Для циркуляционных насосов график NPSH не используется; вместо этого на рис. 34 представлена таблица с указанием минимального давления на всасывании, необходимого при различных значениях температуры рабочей жидкости. H v : Этот параметр отражает давле­ние насыщенного пара перека­чиваемой жидкости. Он вклю­чен в уравнение, поскольку при более высокой температуре жидкость начинает испаряться быстрее. H v также зависит от плотности жидкости: H s : Этот параметр представляет собой запас прочности, кото­рый должен определяться в конкретных условиях в зависи­мости от степени надежности и достоверности применяемой методики расчета. На практи­ке его берут равным 0,5-1 м. В случае присутствия в воде газа это значение часто выби­рают равным 2 м.

Как избежать кавитации

Данная аргументация основана на приведенной выше формуле: H max = H b - H fs - NPSH - H v - H s и учитывает влияние каждого из чле­нов уравнения. H max : Насос всегда необходимо уста­навливать как можно ниже или потребуется поднять уровень жидкости со стороны всасыва­ния. Последний способ часто бывает наиболее дешевым ре­шением. Положительное дав­ление на всасывании, созда­ваемое насосом (если таковой имеется) или расширительным бачком, должно поддерживать­ся как можно более высоким. H b : Этот показатель является по­стоянным при перекачивании определенной жидкости в дан­ном месте. H fs : Всасывающий трубопровод должны быть как можно более коротким и иметь минимальное количество колен, клапанов, вентилей и фитингов. NPSH : Следует выбирать насос с наи­меньшим потребным NPSH. H v : Этот параметр может снижать­ся при падении температуры жидкости (температуры окру­жающей среды). H s : Устанавливается индивиду­ально. Наиболее простой способ избежать кавитации – это снизить подачу насо­са путем частичного закрытия нагне­тательного (или напорного) клапана; в результате этого понизится требу­емое значение NPSH и H fs , следова­тельно возрастет значение H max .

Альтернативная методика расчета для устранения опасности кавитации

Многие предпочитают преобразо­вать формулу в функции NPSH сле­дующим образом: Это дает имеющееся значение NPSH available для данной гидросисте­мы, которое затем можно сравнить с требуемым значением NPSH required , указанным на графиках рабочих характеристик соответствующего на­соса. Таким образом, если NPSH available ≥NPSH required кавитации удается избежать. Однако если NPSH available ≤NPSH required то опасность возникновения кавита­ции сохраняется.

Подключение электродвигателя « GRUNDFOS » в соответствии с обозначением на его шильдике

Расшифровка обозначений : - “ означает “от - до“; “ / “ означает, что электродвигатель может подключаться двумя разными вариантами; “ D “ обозначение соединения обмо­ток электродвигателя по схеме «тре­угольник»; “ Y “ обозначение соединения обмоток электродвигателя по схеме «звезда». 1 х 220-230 / 240 V
  1. Двигатель может быть подключен в однофазную сеть переменного тока напряжением U = 1 x 220-230В.
  2. Двигатель может быть подключен в однофазную сеть переменного тока напряжением U = 1 x 240В.
3 х 220 240D / 380 415Y V
  1. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 380-415В по схеме «звезда».
  2. Двигатель может быть подклю­чен в трехфазную сеть переменного тока напряжением U = 3 x 220-240В по схеме «треугольник» (например в Бельгии, в Норвегии, в Италии, во Франции).
  3. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 220-240В по схеме «звезда-треугольник».
3 х 380 415D V
  1. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 380-415В по схеме «треугольник».
  2. Двигатель может быть подключен в трехфазную сеть переменного тока напряжением U = 3 x 380-415В по схеме «звезда-треугольник».

Напор или подробнее о всасе, гидравлических потерях и т.д.

На диаграмме работы центробежного насоса производимое насосом давление выражается через термин «напор » и соответствует высоте столба воды при плотности 1г/см3. Напор чаще всего измеряется в метрах (м).

Напор, создаваемый насосом, показывает какое “давление” может быть достигнуто этим насосом при перекачке какого-то определенного количества воды в результате вращения рабочего колеса с определенной частотой (как правило, 1500 об/мин или выше).

Статический напор и потери на трение

Когда производитель насоса спрашивает у клиента “Какое давление или напор вам необходим?” это означает, какое давление необходимо создать насосу, чтобы перекачать определенное количество воды из начальной в конечную точку и преодолеть при этом все гидравлические сопротивления трубопроводов. Если Вам нужно перекачать воду на 100 м вверх, тогда статический напор у вас будет 100 м (расстояние по вертикали от источника воды до конечной точки перекачки).

Допустим длина трубопроводов у Вас тоже 100 м. Кроме того, предположим, что расчетные гидравлические потери в этой трубе составляют 8%, т.е. 8 м. Тогда animated porn общий динамический напор будет 108 м. Именно это значение у Вас и запрашивал производитель насоса, а не просто 100 м, как предполагали вы.

Следует помнить,

что расстояние по вертикали между поверхностью источника воды до оси рабочего колеса всасывающего naked celebrities насоса называется высотой всасывания (всас , по-английски ‘suction lift’).

Расстояние по вертикали между осью рабочего колеса насоса и самой верхней точкой напорного mobile porn tube трубопровода называется статическим напором (см. рис.).

Расстояние по Amateur Porn вертикали между поверхностью воды источника до верхней точки напорного трубопровода называется общим celebrity news статическим напором .

Что bareback gay porn такое NPSH

У владельцев насосов бытует распространенное заблуждение, что насосы всасывают воду. Насосы не всасывают воду, а используют атмосферное давление, которое «толкает» воду вверх по всасывающему шлангу к насосу в камеру низкого давления, которое создалось в результате вращения рабочего колеса и переноса воды из этой камеры в напорную камеру celebrity sex tapes корпуса насоса. Проще говоря, ничто не работает в вакууме. Поэтому, как только мы включаем насос, рабочее колесо выбрасывает воду из всасывающей камеры насоса в напорную камеру, понижая при этом давление в первой. Вода в источнике, который находится под атмосферным давлением, поднимается по шлангу в насос. И так будет всегда, пока атмосферное давление за минусом высоты всаса и потерь (NPSHa) будет больше сопротивления проточной части насоса (NPSHr).

Это важно

Не вводите себя в заблуждение, когда слышите от продавцов насосов, что их насосы могут celebrity porn всасывать с высоты 9м.

Большинство самовсасывающих насосов смогут это сделать, но идея hentai porn pics в том, чтобы не потерять максимальную производительность при этом, а это удается лишь тем насосам, у которых спроектировано и реализовано низкое сопротивление проточной части (NPSHr).

Как показал опыт практической работы, связанной с применением насосного оборудования, много людей ошибочно подбирают оборудование, не вникая в физику процесса. Мы хотим дать курс, описывающий физические процессы в гидравлической системе. Эта информация будет полезна всем читателям. Все должно быть достаточно просто, так как при написании серии данных статей, мы руководствовались простотой изложения. Надеемся, информация окажется полезной для Вас.

1. Характеристика системы
Главным назначением гидравлических систем в большинстве случаев является либо подача жидкости из источника к требуемой точке, то есть заполнение резервуара, расположенного на более высокой отметке, либо циркуляция жидкости по всей системе, как способ передачи тепла.
Давление, необходимое для создания потока жидкости, должно быть, подобрано в требуемом значении и должно компенсировать потери в системе. Существует два типа потерь: статический напор и потери напора на трении.

Статический напор - это разница высот между всасывающим и напорными резервуарами, как показано на рис. 1. Он не зависит от значения расхода, как показано графически на рис. 2.
Потери напора на трении (иногда называемые потери динамического напора) возникают во время прохождения перекачиваемой жидкостью труб, клапанов и другого оборудования системы. Данные потери пропорциональны площади пройденной потоком.
Замкнутый контур циркуляционной системы, недоступный воздействию атмосферного давления, имеет только гидравлические потери напора системы на трение, находящиеся в обратной зависимости к значению расхода, как показано на рис. 3.

2. График кривой гидравлической характеристики
Большинство систем имеют одновременно статический напор и потери напора на трении, а большинство случаев, отражено на двух кривых рис. 4 и 5. Значение отношения статического напора к потерям напора на трении, по всему рабочему диапазону, влияет на эффективность, которая должна достигаться при работе двигателей с частотным регулированием.
Статический напор - это особенность индивидуальной системы, уменьшающая данный напор, там где это возможно, обычно это экономит затраты на установку и эксплуатацию насоса. Потери напора на трении должны быть снижены с целью снижения средств на эксплуатацию насоса, но после исключения ненужной трубопроводной арматуры и участка трубы, дальнейшее снижение потерь на напоре будет требовать больший диаметр труб, которые повысят затраты на монтаж.

3. Гидравлическая кривая насоса
Характеристики насоса могут быть также выражены графически, как отношение напора к расходу. Смотрите рис. 6 для центробежных насосов и рис. 7 для поршневых.
Центробежные насосы имеют гидравлическую кривую характеристик, где с увеличением расхода, напор по-степеннно падает, но для поршневых насосов, какое бы ни было значение напора, расход практически постоянный.

4. Рабочая точка насоса
Когда насос устанавливается в системе, то их взаимодействие может быть изображено графически наложением насоса и гидравлической кривой системы, (рис. 8 и рис. 9).
Если фактическая гидравлическая кривая системы отличается от расчетной, то насос будет работать в точке с напором и расходом, отличном от ожидаемого.
У поршневых насосов, если гидравлическое сопротивление системы растет, то насос увеличит давление нагнетания и будет сохранять практически постоянный расход, зависящий от вязкости жидкости и типа насоса. Без использования защитной трубопроводной арматуры значение давления может достичь критической отметки.
Для центробежных насосов увеличение гидравлического сопротивления системы сведет расход в конечном итоге до значения «О», но максимальное значение напора, как показано на рис. 8 ограничивается. Кроме того, при таких условиях возможен непродолжительный период работы насоса. Ошибка расчета кривой гидравлической системы вероятнее всего может также привести к выбору центробежного насоса не отвечающего оптимальным характеристикам.
При подборе насоса большего типоразмера, который будет работать в большем значении расхода или даже в условиях дроссельной системы, дополнительный запас мощности увеличит потребление энергии и сократит срок службы насоса.



Loading...Loading...