Нейрофизиологические механизмы активации. Активирующая ретикулярная система

Изменения уровней бодрствования связаны с изменениями тонуса соответствующих нервных центров, при этом можно выделить несколько уровней регуляции бодрствования: клеточный, отдельных мозговых центров, модулирующих систем и мозга как целого.

Нейронные механизмы. На нейронном уровне регуляция функциональных состояний осуществляется с помощью особой категории нейронов, именуемых модуляторными. Существуют две категории модуляторных нейронов: активирующего и инактивирующего типа. Первые увеличивают активность синапсов, соединяющих чувствительные и исполнительные нейроны, вторые снижают эффективность синапсов, прерывая путь передачи информации от афферентных к эфферентным нейронам. Кроме того, нейроны-модуляторы различаются по степени генерализации своего действия. Переход к бессознательному состоянию, например при засыпании, можно определить как выключение активирующих нейронов-модуляторов генерализованного типа и включение инактивирующих нейронов-модуляторов. В эволюции нейроны-модуляторы объединились в ансамбли и сети, сосредоточенные на уровне ретикулярной формации ствола мозга и неспецифического таламуса, образуя активирующую и инактивирующую системы.

Модулирующие системы. Совокупность модулирующих систем образует особый блок, который регулирует тонус коры и подкорковых структур, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью.

Важнейший участок регуляторного блока - ретикулярная формация мозга, представляющая сеть из нервных клеток в средней части ствола. Со всех сторон ретикулярная формация окружена сенсорными путями, которые отдают ей часть афферентной импульсации. Благодаря этому любое сенсорное возбуждение повышает уровень активации ретикулярной формации, и активация по восходящим путям распространяется вверх к коре больших полушарий. Экспериментально показано, что раздражение вживленных в ретикулярную формацию электродов приводит к пробуждению спящего животного.

Еще одно важное звено регуляции функциональных состояний связано с работой таламуса. Зрительный бугор, или таламус, - отдел промежуточного мозга, который играет роль коллектора сенсорной информации, так как в него поступает информация от всех органов чувств. По некоторым данным в центре таламуса находится «водитель ритма» - морфофункциональное образование, отвечающее за генерацию ритмической активности и распространяющее синхронизирующие влияния на обширные области коры. Ядра неспецифического таламуса образуют диффузную проекционную таламическую систему, которая оказывает на кору возбуждающие и тормозные влияния. Эти влияния по сравнению с эффектами возбуждения ствола мозга имеют более ограниченный характер и захватывают относительно небольшие участки коры.

Таким образом, при раздражении таламуса возникает реакция активации в коре головного мозга. Эта реакция отчетливо видна в текущей электроэнцефалограмме: она сравнительно кратковременна и локализована. В отличие от реакции активации, вызываемой ретикулярной формацией ствола мозга, которая считается генерализованной реакцией активации, эффекты возбуждения неспецифического таламуса называют локальной активацией. Передача эстафеты активирующих влияний с уровня ретикулярной формации ствола мозга на уровень таламической системы означает переход от генерализованной активации коры к локальной. Первая отвечает за глобальные сдвиги общего уровня бодрствования, вторая - за селективное, т.е. избирательное сосредоточение внимания (см. гл. 6). В регуляции уровня бодрствования и обеспечении избирательной активации той или иной формы поведения, направленного на удовлетворение потребностей, принимает участие лимбическая система мозга, имеющая как активирующие, так и тормозящие поведение отделы (см. гл. 4).

Функции стриопаллидарной системы. К регуляции функциональных состояний имеет также отношение стриопаллидарная система - комплекс нервных центров, именуемых также базальными ганглиями. По некоторым представлениям, ведущая роль в формировании избирательной активации неокортекса принадлежит стриопаллидарной системе, которая сама находится под контролем коры. Эта система отвечает за распределение активационных ресурсов мозга при организации восприятия и действия. При этом стриопаллидарная система работает как адаптивно настраиваемый фильтр, избирательно регулирующий по нисходящей системе связей мышечный тонус (иерархию движений) и избирательность сенсорного внимания.

Регуляция активации, которая осуществляется стриопаллидарной системой, находится в соответствии с уровнем и характером мотивационного возбуждения, а также результатом обработки информации, осуществляемой корой мозга. В результате взаимодействия стриопаллидарной системы, таламуса и коры достигается наиболее адекватное распределение активации по структурам мозга, которое и обеспечивает избирательное реагирование на значимые стимулы.

Регуляция функциональных состояний на уровне целого мозга. Важнейшим регулятором уровня бодрствования в целом, а также внимания как избирательного процесса служат передние отделы коры больших полушарий - фронтальные зоны. Именно эти структуры по нисходящим кортикоретикулярным путям модулируют в нужном направлении активность таламуса и ствола мозга. Включение в этот процесс фронтальных зон с их нисходящими путями позволяет говорить о существовании своеобразного замкнутого контура регуляции.

Исходно ретикулярная формация ствола мозга, возбуждаясь под действием внешних стимулов, активизирует неспецифический таламус и кору больших полушарий, а та, в свою очередь, благодаря нисходящим проводящим путям может или снизить активность ретикулярной формации ствола и таламуса, или, напротив, увеличить, в зависимости от того что требуется в данный момент времени. Таким образом, можно говорить о существовании регулируемой или управляемой корковой активации, за счет которой кора больших полушарий может настраивать собственный уровень возбудимости соответственно задачам текущей жизнедеятельности.

Накопление, хранение и обработка информации - это важнейшее свойство нервных сетей. Невозможно переоценить биологическое значение этих процессов для адаптации поведения живого организма к окружающей среде. Без способности к научению и памяти ни отдельная особь, ни вид в целом не могли бы выжить, поскольку в этом случае было бы невозможно планировать свое поведение и преднамеренно избегать ошибок.

БЛАГАЯ ЗАБЫВЧИВОСТЬ

Совершенно ясно, что в нашей памяти откладывается лишь незначительная часть воспринимаемых нами явлений. В этой связи возникают вопросы: каким же образом мозг запоминает, что он запоминает и что забывает.
Без отбора информации и удаления ее из памяти мы были бы буквально затоплены потоком непрерывно поступающих данных. В настоящее время за единицу информации принимается бит. Для хранения 1 бита требуется 10 нейронов. Величина общей информационной емкости мозга равна
3 х 108 бит. Такой емкости хватило бы, для того чтобы хранить около 1% от общего потока информации, протекающей через наше сознание. Если считать, что в среднем информационный поток составляет 20 бит/сек, то за 70 лет при длительности активного дня 16 часов, общее поступление информации составит 3 х 1010 бит. Это в 100 раз больше, чем информационная емкость мозга.
Память есть результат образования новых условных связей, формирующихся в коре головного мозга, с помощью которых фиксируется индивидуальный опыт организма. Например, ребенок, единожды получив ожог от пламени свечи, от кипятка, на всю жизнь запоминает эти ощущения.
Память как процесс связана с восприятием информации, с ее хранением и использованием. Извлечение из хранилища памяти прошлого опыта называется актуализацией памяти.

ВИДЫ ПАМЯТИ

Различают несколько видов памяти.
Моторная память
Эволюционно это самый древний вид. В его основе лежит способность запоминать и производить какую-то программу движений. Этот вид памяти генетически запрограммирован. Например, ходьба, подъем по ступенькам, плаванье и т.д.
Эмоциональная память
Связана с фиксацией ощущений, которыми сопровождались те или иные события, явления жизни. Эмоции - эволюционно более древнее явление, чем ощущения. Эмоции выполняют регуляторную функцию в обеспечении поведения и адаптации организма к окружающей среде. Биологический смысл эмоциональной памяти заключается в том, что во всем диапазоне эмоциональных проявлений чаще всего фиксируются отрицательные эмоции, то есть вырабатывается система предупреждения.
Помимо этого эмоционально окрашенные ощущения фиксируются практически мгновенно и непроизвольно. Эмоциональная память самая прочная, поэтому имеет очень большое значение в процессе обучения.
Образная память
Связана с работой сенсорных систем или органов чувств. Информация запоминается в виде образов определенной модальности. Существуют зрительная, слуховая, тактильная, вкусовая и другие виды образной памяти. Эта память спонтанна, гибка и обеспечивает длительное хранение следа памяти.
Логическая память
Этот вид памяти эволюционно самый новый. Логическая память формируется только на базе второй сигнальной системы в процессе обучения. Вторая сигнальная система, по определению физиолога И.П. Павлова, - это слово. Сложно запомнить материал без понимания, без логического восприятия. Никаких природных готовых программ у этой памяти нет. Логическая память - результат тех интеллектуальных возможностей, которые есть у ребенка. Логическая память у младших и старших школьников различна. Лучше выражена она у старшеклассников.

В ЗАВИСИМОСТИ ОТ ВРЕМЕНИ

По продолжительности закрепления и сохранения информации память делят на три вида:
1) сенсорную;
2) кратковременную;
3) долговременную.
Сенсорная память
Чувствительные сигналы в течение нескольких сот миллисекунд с момента своего воздействия сохраняются в сенсорной памяти. Здесь происходит анализ сигналов, их оценка и в дальнейшем либо забывание, либо направление на обработку. Эту память также называют иконической, потому что она лучше всего изучена для зрительных стимулов.
Процесс забывания начинается сразу же после поступления информации. Исследования показывают, что если испытуемому в течение 50 миллисекунд предъявить 16 букв, а затем попросить назвать эти буквы, то сразу после предъявления он вспоминает около 70% увиденного. Через 150 миллисекунд - объем запомненной информации равен 25–35%, а через 250 миллисекунд - уже вся информация из сенсорной памяти теряется.
Известно, что наряду с таким пассивным «угасанием» информации существует и процесс ее активного «стирания» в результате поступления новых сигналов.
Переход информации из весьма нестойкой сенсорной памяти в более стойкую может совершаться двумя путями. Первый путь - словесное кодирование сенсорных сигналов - это свойственно взрослым людям. Второй путь - несловесная обработка сигналов. Механизм такой обработки пока неизвестен. По-видимому, этот путь служит для запоминания информации, которую сложно выразить словами, и используется, как правило, маленькими детьми и животными.
Кратковременная память
Сенсорная память переходит в кратковременную, которая отвечает за временное хранение информации, закодированной словесно. Емкость этой памяти меньше, чем сенсорной. Данные хранятся здесь в порядке поступления информации. Забывание в кратковременной (первичной) памяти происходит в результате «вытеснения» старой информации новыми сигналами. Переход информации из кратковременной памяти в долговременную облегчается практикой, то есть целенаправленным повторением материала.
Долговременная память
Эта память характеризуется значительной емкостью и устойчивостью. Только информация, которая перешла в долговременную (вторичную) память, может быть извлечена через длительное время.
Информация переходит в долговременную память, в процессе жизнедеятельности часть информации теряется, а около 72% - остается на всю жизнь. В долговременной памяти данные накапливаются в соответствии с их «значимостью». Извлечение информации из долговременной памяти происходит дольше, чем из кратковременной. Забывание на уровне долговременной памяти связано с влиянием на запоминание уже имеющейся информации или с влиянием вновь поступившей информации.
Существует закон интерференции, согласно которому объекты, смещенные к центру, запоминаются хуже, чем краевые. Интерференция проявляется независимо от модальности раздражителя и не имеет значения для кратковременной памяти. В долговременной памяти интерференция проявляется тем меньше, чем ближе находятся схожие раздражители.

СИНАПТИЧЕСКИЙ ЭФФФЕКТ И ДРУГИЕ

Основы современного подхода к исследованию нейронных механизмов научения и памяти заложили в начале 40-х годов ХХ века русский физиолог Иван Петрович Павлов, монреальский психолог Дональд Хебб и поляк Ежи Конорски. Они исходили из представлений о том, что процессы научения и памяти должны быть связаны с изменениями нервных сетей (нейронных ансамблей). Нервные клетки в таких ансамблях объединены в специфические сети.
При формировании кратковременной памяти возбуждение циркулирует по системе циклически замкнутых нейронов в коре головного мозга и в подкорковых структурах, через которые осуществляется восприятие этой информации, ее анализ и хранение (фиксация).
К показателям функционирования кратковременной памяти относят синаптический эффект изменения ядерно-ядрышкового аппарата клетки, выброс в цитоплазму нейрона биологически активных веществ и сопутствующую этим процессам перестройку обмена веществ клетки.
Включение блоков долговременной памяти обеспечивается через 10 минут после прихода информации в клетку. За это время происходит перестройка биологических свойств нервной клетки. Считается, что во время обучения в нервные клетки приходит чувствительная афферентная импульсация, которая вызывает количественную активацию синтеза РНК и белка. Это может приводить либо к установлению новых синапсов между новыми группами клеток, либо к перестройке существующих синапсов. Наряду с этим, процесс запоминания может сопровождаться активацией синтеза нуклеиновых кислот и белка. Синтезированные молекулы являются хранилищем информации.
Сон работает на долговременную память. «Утро вечера мудренее» - ночной сон с увеличенной парадоксальной фазой приводит к тому, что переработка воспринятого в увеличенную парадоксальную фазу сна приводит к разрешению любой проблемной ситуации. Изъятие нужного решения из подсознания, где находится 95% информации, происходит в стадии сна с быстрым движением глаз.

ПОИСК НЕ ЗАКОНЧЕН

В онтогенезе в процессе дифференцировки во всех типах клеток, кроме нервных, реализуется от 1 до 12% генетической информации. Это специфическая генетическая информация о тех белках, которые должны синтезироваться в клетках определенного типа. В процессе онтогенеза разные типы клеток начинают использовать разную генетическую информацию.
В системе генома нервных клеток, особенно клеток структур больших полушарий, в зависимости от условий жизнедеятельности, меняется уровень синтеза белков, которые обеспечивают фиксацию жизненного опыта. Нервные клетки реализуют от 15 до 37% генетической информации. Если тренировать память, функциональные способности нервной деятельности повышаются до верхней границы.
В последнее время в самых различных структурах мозга были обнаружены нейроактивные пептиды. Предполагают, что они причастны к процессам памяти. Существует весьма генерализованное влияние пептидов, участвующих в общей активации и мотивационных механизмах.
Например, введение адренокортикотропного гормона или его фрагментов приводит к активации нейронов во многих отделах нервной системы. Ухудшение памяти связывают также с генетическим дефицитом вазопрессина. Окситоцин оказывает противоположное действие. Эндорфины и энкефалины регулируют память посредством взаимодействия с медиатором и уже через них оказывают влияние на метаболизм макромолекул. Нейропептиды могут либо усилить, либо ослабить действие медиатора.
Все ныне существующие представления и гипотезы о нейрофизиологических основах памяти не являются до конца изученными и доказанными. В этой связи и на сегодняшний день эта проблема интригующе интересна как для физиологов, так и для психологов.

Ольга ПАВЛОВА,
кандидат биологических наук

Публикация статьи произведена при поддержке интернет проекта «OF BURNS». Посетив интернет проект «OF BURNS», Вы найдете всё про ожоги . Большое количество полезных статей и публикаций подробно расскажут про виды и степени ожогов детей и взрослых, методах оказания первой помощи при ожогах и способах их лечения, а так же про ожоги у домашних питомцев. Посетить интернет проект «OF BURNS» можно по адресу http://ofburns.ru/

  • 2.1. Методы изучения работы головного мозга
  • 2.1.1. Электроэнцефалография
  • 2.1.2. Вызванные потенциалы головного мозга
  • 2.1.3. Топографическое картирование электрической активности мозга
  • 2.1.4. Компьютерная томография
  • 2.1.5. Нейронная активность
  • 2.1.6. Методы воздействия на мозг
  • 2.2. Электрическая активность кожи
  • 2.3. Показатели работы сердечно-сосудистой системы
  • 2.4. Показатели активности мышечной системы
  • 2.5. Показатели активности дыхательной системы (пневмография)
  • 2.6. Реакции глаз
  • 2.7. Детектор лжи
  • 2.8. Выбор методик и показателей
  • Заключение
  • Рекомендуемая литература
  • РазделIi. Психофизиология функциональных состояний и эмоций Глава. 3. Психофизиология функциональных состояний
  • 3.1. Проблемы определения функциональных состояний
  • 3.1.1. Разные подходы к определению фс
  • 3.1.2. Нейрофизиологические механизмы регуляции бодрствования
  • Основные различия в эффектах активации ствола мозга и таламуса
  • 3.1.3. Методы диагностики функциональных состояний
  • Эффекты действия симпатической и парасимпатической систем
  • 3.2. Психофизиология сна
  • 3.2.1. Физиологические особенности сна
  • 3.2.2. Теории сна
  • 3.3. Психофизиология стресса
  • 3.3.1. Условия возникновения стресса
  • 3.3.2. Общий адаптационный синдром
  • 3.4. Боль и ее физиологические механизмы
  • 3.5. Обратная связь в регуляции функциональных состояний
  • 3.5.1. Виды искусственной обратной связи в психофизиологии
  • 3.5.2. Значение обратной связи в организации поведения
  • Глава 4. Психофизиология эмоционально-потребностной сферы
  • 4.1. Психофизиология потребностей
  • 4.1.1. Определение и классификация потребностей
  • 4.1.2. Психофизиологические механизмы возникновения потребностей
  • 4.2. Мотивация как фактор организации поведения
  • 4.3. Психофизиология эмоций
  • 4.3.1. Морфофункциональный субстрат эмоций
  • 4.3.2. Теории эмоций
  • 4.3.3. Методы изучения и диагностики эмоций
  • Рекомендуемая литература
  • РазделIii. Психофизиология познавательной сферы Глава 5. Психофизиология восприятия
  • 5.1. Кодирование информации в нервной системе
  • 5.2. Нейронные модели восприятия
  • 5.3. Электроэнцефалографические исследования восприятия
  • 5.4. Топографические аспекты восприятия
  • Различия между полушариями при зрительном восприятии (л.ИЛеушина и др., 1982)
  • Глава 6. Психофизиология внимания
  • 6.1. Ориентировочная реакция
  • 6.2. Нейрофизиологические механизмы внимания
  • 6.3. Методы изучения и диагностики внимания
  • Глава 7. Психофизиология памяти
  • 7.1. Классификация видов памяти
  • 7.1.1. Элементарные виды памяти и научения
  • 7.1.2. Специфические виды памяти
  • 7.1.3. Временная организация памяти
  • 7.1.4. Механизмы запечатления
  • 7.2. Физиологические теории памяти
  • 7.3. Биохимические исследования памяти
  • Глава 8. Психофизиология речевых процессов
  • 8.1. Неречевые формы коммуникации
  • 8.2. Речь как система сигналов
  • 8.3. Периферические системы обеспечения речи
  • 8.4. Мозговые центры речи
  • 8.5. Речь и межполушарная асимметрия
  • 8.6. Развитие речи и специализация полушарий в онтогенезе
  • 8.7. Электрофизиологические корреляты речевых процессов
  • Глава 9. Психофизиология мыслительной деятельности
  • 9.1. Электрофизиологические корреляты мышления
  • 9.1.1. Нейронные корреляты мышления
  • 9.1.2. Электроэнцефалографические корреляты мышления
  • 9.2. Психофизиологические аспекты принятия решения
  • 9.3. Психофизиологический подход к интеллекту
  • Глава 10. Сознание как психофизиологический феномен
  • 10.1. Психофизиологический подход к определению сознания
  • 10.2. Физиологические условия осознания раздражителей
  • 10.3. Мозговые центры и сознание
  • 10.4. Измененные состояния сознания
  • 10.5. Информационный подход к проблеме сознания
  • Глава 11. Психофизиология двигательной активности
  • 11.1. Строение двигательной системы
  • 11.2. Классификация движений
  • 11.3. Функциональная организация произвольного движения
  • 11.4. Электрофизиологические корреляты организации движения
  • 11.5. Комплекс потенциалов мозга, связанных с движениями
  • 11.6. Нейронная активность
  • Рекомендуемая литература
  • РазделIy. Возрастная психофизиология Глава 12. Основные понятия, представления и проблемы
  • 12.1. Общее понятие о созревании
  • 12.1.1. Критерии созревания
  • 12.1.2. Возрастная норма
  • 12.1.3. Проблема периодизации развития
  • 12.1.4. Преемственность процессов созревания
  • 12.2. Пластичность и сензитивность цнс в онтогенезе
  • 12.2.1. Эффекты обогащения и обеднения среды
  • 12.2.2. Критические и сензитивные периоды развития
  • Глава13. Основные методы и направления исследований
  • 13.1. Оценка эффектов возраста
  • 13.2. Электрофизиологические методы исследования динамики психического развития
  • 13.2.1. Изменения электроэнцефалограммы в онтогенезе
  • 13.2.2. Возрастные изменения вызванных потенциалов
  • 13.3. Реакции глаз как метод изучения познавательной активности в раннем онтогенезе
  • 13.4. Основные типы эмпирических исследований в возрастной психофизиологии
  • Глава 14. Созревание головного мозга и психическое развитие
  • 14.1. Созревание нервной системы в эмбриогензе
  • 14.2. Созревание основных блоков головного мозга в постнаталыюм онтогенезе
  • 14.2.1.Эволюционный подход к анализу созревания головного мозга
  • 14.2.2. Кортиколизация функций в онтогенезе
  • 14.2.3. Латерализация функций в онтогенезе
  • 14.3. Созревание мозга как условие психического развития
  • Глава 15. Старение организма и психическая инволюция
  • 15.1. Биологический возраст и старение
  • 15.2. Изменение организма при старении
  • 15.3. Теории старения
  • 15.4. Витаукт
  • Рекомендуемая литература
  • Цитированная литература
  • Содержание
  • 6.2. Нейрофизиологические механизмы внимания

    Изучение физиологических механизмов внимания осуществляется на разных уровнях: нейронном, структурно-функциональном и системном. Каждый из этих уровней исследования формирует свои представления о физиологических основах внимания.

    Нейроны новизны. Наиболее интересные факты, иллюстрирующие функции нейронов в механизмах внимания, связаны с обеспечением ориентировочной реакции. Еще в 60-е годы Г. Джаспер во время нейрохирургических операций выделил в таламусе человека особые нейроны – «детекторы» новизны или внимания, которые реагировали на первые предъявления стимулов.

    Позднее в нейронных сетях были выделены нервные клетки, получившие название нейронов новизны и тождества (Соколов, 1995). Нейроны новизны позволяют выделять новые сигналы. Они отличаются от других характерной особенностью: их фоновая импульсация возрастает при действии новых стимулов разной модальности. С помощью множественных связей эти нейроны соединены с детекторами отдельных зон коры головного мозга, которые образуют на нейронах новизны пластичные возбуждающие синапсы. Таким образом, при действии новых стимулов импульсная активность нейронов новизны возрастает. По мере повторения стимула и в зависимости от силы возбуждения ответ нейрона новизны избирательно подавляется, так что дополнительная активация в нем исчезает и сохраняется лишь фоновая активность.

    Нейрон тождества также обладает фоновой активностью. К этим нейронам через пластичные синапсы поступают импульсы от детекторов разных модальностей. Но в отличие от нейронов новизны, в нейронах тождества их связь с детекторами осуществляется через тормозные синапсы. При действии нового раздражителя фоновая активность в нейронах тождества подавляется, а при действии привычных раздражителей, напротив, активизируется.

    Итак, новый стимул возбуждает нейроны новизны и тормозит нейроны тождества, таким образом, новый раздражитель стимулирует активирующую систему мозга и подавляет синхронизирующую (тормозную) систему. Привычный стимул действует прямо противоположным образом – усиливая работу тормозной системы, не влияет на активирующую.

    Особенности импульсной активности нейронов человека при выполнении психологических проб, требующих мобилизации произвольного внимания, описаны в работах Н.П. Бехтеревой и ее сотрудников. При этом в передних отделах таламуса и ряде других структур ближайшей подкорки были зафиксированы стремительные возникающие вспышки импульсной активности, по частоте в 2 – 3 раза превышающие уровень фона. Характерно, что описанные изменения в импульсной активности нейронов сохранялись на протяжении выполнения всего теста, и только по его завершении уровень активности этих нейронов возвращался к исходному.

    В целом, в этих исследованиях установлено, что различные формы познавательной деятельности человека, сопровождающиеся мобилизацией произвольного внимания, характеризуются определенным типом активности нейронов, четко сопоставимым с динамикой произвольного внимания.

    Структурно-функциональный уровень организации внимания. Одним из наиболее выдающихся достижений нейрофизиологии в XX веке явилось открытие и систематическое изучение функций неспецифической системы мозга, которое началось с появления в 1949 г. книги Г. Моруцци и Г.Мэгуна «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ».

    Ретикулярная формация наряду с лимбической системой образуют блок модулирующих систем мозга, основной функцией которых является регуляция функциональных состояний организма (см. главу З.1.З.). Первоначально к неспецифической системе мозга относили в основном лишь сетевидные образования ствола мозга и их главной задачей считали диффузную генерализованную активацию коры больших полушарий. По современным представлениям, восходящая неспецифическая активирующая система простирается от продолговатого мозга до зрительного бугра (таламуса).

    Таламус, входящий в состав промежуточного мозга, имеет ядерную структуру. Он состоит из специфических и неспецифических ядер. Специфические ядра обрабатывают всю поступающую в организм сенсорную информацию, поэтому таламус образно называют коллектором сенсорной информации. Специфические ядра таламуса связаны, главным образом, с первичными проекционными зонами анализаторов. Неспецифические ядра направляют свои восходящие пути в ассоциативные зоны коры больших полушарий.

    В 1955 г. Г.Джаспером было сформулировано представление о диффузно-проекционной таламической системе. Опираясь на целый ряд фактов, он утверждал, что диффузная проекционная таламическая система (неспецифический таламус) в определенных пределах может управлять состоянием коры, оказывая на нее как возбуждающее, так и тормозное влияния. В экспериментах на животных было показано, что при раздражении неспецифического таламуса в коре головного мозга возникает реакция активации. Эту реакцию легко наблюдать при регистрации энцефалограммы, однако активация коры при раздражении неспецифического таламуса имеет рад отличий от активации, возникающей при раздражении ретикулярной формации ствола мозга (см. главу 3.2).

    По современным представлениям, переключение активирующих влияний с уровня ретикулярной формации ствола мозга на уровень таламической системы означает переход от генерализованной активации коры к локальной:

    1) первая отвечает за глобальные сдвиги общего уровня бодрствования;

    2) вторая отвечает за избирательное сосредоточение внимания.

    Ретикулярная формация ствола мозга и неспецифический таламус тесно связаны с корой больших полушарий. Особое место в системе этих связей занимают фронтальные зоны коры. Предполагается, что возбуждение ретикулярной формации ствола мозга и неспецифического таламуса по прямым восходящим путям распространяется на передние отделы коры, При достижении определенного уровня возбуждения фронтальных зон по нисходящим путям, идущим в ретикулярную формацию и таламус. осуществляется тормозное влияние. Фактически здесь имеет место контур саморегуляции: ретикулярная формация изначально активизирует фронтальную кору, а та в свою очередь тормозит (снижает) активность ретикулярной формации. Поскольку все эти влияния носят градуальный характер, т.е. изменяются постепенно, то с помощью двухсторонних связей фронтальные зоны коры могут обеспечивать именно тот уровень возбуждения, который требуется в каждом конкретном случае.

    Таким образом, фронтальная кора – важнейший регулятор состояния бодрствования в целом и внимания как избирательного процесса. Она модулирует в нужном направлении активность стволовой и таламической систем. Благодаря этому, можно говорить о таком явлении как управляемая корковая активация (Дубровинская, 1985).

    Система внимания в мозге человека. Изложенная выше схема не исчерпывает всех представлений о мозговом обеспечении внимания. Она характеризует общие принципы нейрофизиологической организации внимания и адресуется, главным образом, к так называемому модально-неспецифическому вниманию. Более детальное изучение позволяет специализировать внимание, выделив его модально-специфические виды. Как относительно самостоятельные можно описать следующие виды внимания: сенсорное (зрительное, слуховое, тактильное), двигательное, эмоциональное и интеллектуальное. Клиника очаговых поражений показывает, что эти виды внимания могут страдать независимо друг от друга и в их обеспечении принимают участие разные отделы мозга. В поддержании модально-специфических видов внимания принимают активное участие зоны коры, непосредственно связанные с обеспечением соответствующих психических функций (Хомская, 1987).

    Наряду с этим, с помощью метода регистрации локального мозгового кровотока установлено, что правая фронтальная область коры вносит больший вклад в обеспечение функций селективного внимания, чем левая. Этим же методом установлено, что при восприятии речевых стимулов возрастает активация преимущественно в височно-теменных отделах левого полушария, причем этот эффект не зависит от того, в какое ухо подается стимул. В то же время при прослушивании музыки кровоток усиливается в правом полушарии.

    Позитронно-эмиссионная томография открыла прямой доступ к изучению топографических аспектов функционирования мозговой системы внимания. Показано, что при привлечении внимания к слуховым или зрительным стимулам радикально меняется паттерн возбуждения мозговых структур. Причем в зависимости от того, в какой сенсорной модальности активируется внимание, распределение по коре активированных участков оказывается разным. При зрительной направленности внимания возбуждение преимущественно сконцентрировано в экстрастриарной коре, а при внимании к слуховым стимулам возбуждены височные области, фронтальная кора и ряд подкорковых образований.

    Исследования с помощью ПЭТ-томографии показали также, что вербальная стимуляция вызывает более выраженное потребление глюкозы в левом полушарии по сравнению с правым (у праворуких), а прослушивание музыкальных произведений активизирует преимущественно правое полушарие, особенно его переднефронтальные, теменные и передневисочные зоны.

    Известный американский исследователь М. Познер (Posner, 1988) утверждает, что в мозге человека существует самостоятельная система внимания, которая анатомически изолирована от систем обработки поступающей информации. Внимание поддерживается за счет работы разных анатомических зон, образующих сетевую структуру, и эти зоны выполняют разные функции, которые можно описать в когнитивных терминах. Причем выделяется ряд функциональных подсистем внимания. Они обеспечивают три главные функции: ориентацию на сенсорные события, обнаружение сигнала для фокальной (сознательной обработки) и поддержание бдительности или бодрствующего состояния. В обеспечении первой функции существенную роль играет задняя теменная область и некоторые ядра таламуса, второй – латеральные и медиальные отделы фронтальной коры. Поддержание бдительности обеспечивается за счет деятельности правого полушария.

    Помимо этого, немало клинических и экспериментальных данных свидетельствует о разном вкладе отдельных зон коры и полушарий в обеспечение не только восприятия, но и избирательного внимания. Они позволяют считать, что правое полушарие в основном обеспечивает общую мобилизационную готовность человека, поддерживает необходимый уровень бодрствования и сравнительно мало связано с особенностями конкретной деятельности. Левое в большей степени отвечает за специализированную организацию внимания в соответствии с особенностями задачи.

    Нейрофизиологические механизмы внимания

    Внимание является одной из важнейших психофизиологических функций, обеспечивающих оптимизацию процессов воспитания и обучения. Внимание повышает уровень активации коры больших полушарий. Признаки непроизвольного внимания обнаруживаются уже в период новорожденности в виде элементарной ориентировочной реакции на экстренное применение раздражителя.

    Критическим периодом в формировании непроизвольного внимания является 2-3 месячный возраст – ориентировочная реакция приобретает черты исследовательского характера. В грудном, так же как и в младшем дошкольном возрасте внимание маленького ребенка привлекают в основном эмоциональные раздражители. По мере формирования системы восприятия речи формируется социальная форма внимания, опосредованная речевой инструкцией. Однако вплоть до пятилетнего возраста эта форма внимания легко оттесняется непроизвольным вниманием, возникающим на новые привлекательные раздражители. Существенные изменения корковой активации, лежащей в основе внимания, отмечены в 6-7 –летнем возрасте. Существенно возрастает роль речевой инструкции в формировании произвольного внимания. Качественные сдвиги в формировании нейрофизиологических механизмов внимания отмечены в 9-10 лет. В начале подросткового периода (12-13 лет) нейроэндокринные сдвиги, связанные с началом полового созревания, приводят к изменению корково-подкоркового взаимодействия, ослаблению корковых регулирующих влияний на активационные процессы – ослабляется внимание, нарушаются механизмы произвольной регуляции функции. К концу подросткового периода с завершением полового созревания нейрофизиологические механизмы внимания соответствуют таковым взрослого.

    Физиологические механизмы памяти

    Важнейшим свойством нервной системы является способность накапливать, хранить и воспроизводить поступающую информацию. Накопление информации происходит в несколько этапов. В соответствии с этапами запоминания принято выделять кратковременную и долговременную память. Если информация, хранящаяся в кратковременной памяти, не передается в долговременную память, то она быстро стирается. В долговременной памяти информация хранится длительно в доступном для извлечения виде. Качественной особенностью памяти человека, отличающей его от памяти животных, является то, что человек способен запоминать не столько все подробности информации, сколько общие положения. Это свойственная человеку словесно-логическая абстрактная память.

    Механизмы памяти претерпевают значительные изменения с возрастом. Относительная простота системы памяти в детском возрасте определяет устойчивость, прочность условных рефлексов, выработанных в раннем детстве. По мере структурно-функционального созревания мозга происходит значительное усложнение системы памяти. В младшем школьном возрасте объем памяти достоверно возрастает, а скорость запоминания уменьшается, увеличиваясь затем к подростковому возрасту.

    Мотивация и эмоции

    Мотивация – активные состояния мозговых структур, побуждающие совершать действия (акты поведения), направленные на удовлетворение своих потребностей. Мотивации создают необходимые предпосылки поведения. Мотивации могут создаваться как биологическими потребностями, так и высшими познавательными потребностями. С мотивациями неразрывно связаны эмоции. Достижение цели и удовлетворение потребности вызывает положительные эмоции. Недостижение целей приводит к отрицательным эмоциям. Одной из важнейших потребностей человека является потребность в информации. Этот источник положительных эмоций неисчерпаем в течение всей жизни человека. Эмоции изменяют состояние всего организма. Роль эмоций особенно велика в детском возрасте, когда доминируют процессы корковой эмоциональной активации. У детей очень велика потребность в новизне. Удовлетворение потребностей в новизне способствует положительным эмоциям, и те, в свою очередь, стимулируют деятельность центральной нервной системы. Созревание высших отделов центральной нервной системы в младшем школьном возрасте расширяет возможность формирования познавательных потребностей и способствует совершенствованию регуляции эмоций. Эмоции детей из-за слабости контроля со стороны высших отделов центральной нервной системы неустойчивы, их внешние проявления несдержанны. С возрастом сдержанность эмоциональных проявлений возрастает.

    Нейрофизиологические механизмы сна

    Необходимое условие жизнедеятельности человеческого организма – это чередование бодрствования и сна. В состоянии бодрствования человек активно взаимодействует с внешней средой, воспринимает сигналы окружающего мира и отвечает адекватными реакциями. Сон – это состояние, характеризующееся значительным ослаблением связей с внешним миром. Сон играет роль восстановительного процесса. Сон необходим для нормальной умственной деятельности. И.П. Павлов расценивал сон как охранительное торможение, распространившееся в высших отделах нервной системы.

    Состояние сна можно разделить на три функциональных вида:

    1. Засыпание (дремота).

    2. Медленный сон – сон легкий, средней глубины (очень важен для отдыха, длится 80-90 минут) и глубокий, сопровождающийся снижением мышечного тонуса, общего уровня активности, деятельности внутренних органов.

    3. Быстрый или парадоксальный сон – появляются сновидения, активизируются вегетативные функции. Эту стадию сна связывают с восстановление мозгового обмена, переработкой информации, закреплением ее в долговременной памяти, стимуляцией нервного роста и развития. Быстрый сон занимает у взрослых 25% общего периода сна, у новорожденных – 65-85%.

    Основные понятия

    Восприятие – сложный активный процесс, включающий анализ и синтез поступающей информации.

    Мотивация – активные состояния мозговых структур, побуждающие совершать действия (акты поведения), направленные на удовлетворение своих потребностей.

    Подвижность процессов возбуждения и торможения - скорость, с которой возбуждение может сменяться торможением, и наоборот.

    Сон - охранительное торможение, распространившееся в высших отделах нервной системы.

    Уравновешенность - соотношение силы процессов возбуждения и торможения.

    Тест 3

    1. Что не относится к показателям типов высшей нервной деятельности?

    A. сила процессов возбуждения и торможения

    B. уравновешенность процессов возбуждения и торможения

    C. подвижность процессов возбуждения и торможения

    D. регулярность процессов возбуждения и торможения

    2. Какой тип высшей нервной деятельности характеризуется как

    сильный, но неуравновешенный?

    A. безудержный

    C. спокойный

    D. инертный

    3. В каком возрасте появляются первые признаки развития второй

    сигнальной системы?

    A. в младшем школьном возрасте

    B. в возрасте от 1 до 3 лет

    C. во второй половине первого года жизни

    D. в раннем дошкольном возрасте

    4. Дети какого типа характеризуются высокой эмоциональной возбудимостью?

    A. сильный, уравновешенный, быстрый

    B. сильный, неуравновешенный, безудержный

    C. сильный, уравновешенный, медленный

    D. слабый с пониженной возбудимостью

    5. В каких зонах происходит синтез информации в сенсорные

    комплексы?

    A. в первичных проекционных зонах

    B. во вторичных проекционных зонах

    C. в различных корковых зонах

    D. в зонах покрытия анализаторов

    6. Какой возраст является сензитивным периодом развития зрительного

    восприятия?

    A. юношеский

    B. дошкольный

    C. младший школьный

    D. подростковый

    7. В каком возрасте отмечаются качественные изменения,

    лежащие в основе нейрофизиологических механизмов внимания?

    8. Чем характеризуется младший школьный возраст в аспекте памяти?

    A. простотой системы памяти

    B. увеличением скорости запоминания

    C. ростом объема памяти

    D. неустойчивостью условных рефлексов

    9. Что способствует совершенствованию регуляции эмоций?

    A. доминирование процессов корковой эмоциональной активации

    B. удовлетворение потребности в информации

    C. наличие потребности в новизне

    D. созревание высших отделов центральной нервной системы

    10. На какой стадии сна появляются сновидения?

    A. быстрого сна

    B. легкого сна

    C. глубокого сна

    D. медленного сна


    Похожая информация.


    100 р бонус за первый заказ

    Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

    Узнать цену

    В структурной организации нервной системы принято выделять центральную нервную систему (ЦНС) и периферическую. ЦНС в свою очередь включает в себя спинной мозг и головной мозг. Все остальные нервные структуры входят в периферическую систему. Высший отдел ЦНС - головной мозг состоит из мозгового ствола, большого мозга и мозжечка. Большой мозг представлен двумя полушариями, наружная поверхность которых покрыта серым веществом - корой. Кора составляет важнейшую часть головного мозга, являясь материальным субстратом высшей психической деятельности и регулятором всех жизненных функций организма.

    А.Р. Лурия определил три основных функциональных блока мозга, участие которых необходимо для осуществления любого вида психической деятельности.

    • Первый блок - активации и тонуса. Анатомически он представлен сетевым образованием в стволовых отделах мозга - ретикулярной формацией, которая регулирует уровень активности коры от бодрствующего состояния до утомления и сна. Полноценная деятельность предполагает активное состояние человека, лишь в условиях оптимального бодрствования человек может успешно воспринимать информацию, планировать свое поведение и осуществлять намеченные программы действий.
    • Второй блок - приема, переработки и хранения информации. Он включает в себя задние отделы больших полушарий. В затылочные зоны поступает информация от зрительного анализатора - иногда их называют зрительной корой. Височные отделы отвечают за переработку слуховой информации - это так называемая слуховая кора. Теменные отделы коры связаны с общей чувствительностью, осязанием. Блок имеет иерархическое строение и состоит из корковых полей трех типов: первичные принимают и перерабатывают импульсы от периферийных отделов, во вторичных происходит аналитическая переработка информации, в третичных осуществляется аналитико-синтетическая обработка информации, поступающей от разных анализаторов, - этот уровень обеспечивает наиболее сложные формы психической деятельности.
    • Третий блок - программирования, регуляции и контроля. Блок расположен преимущественно в лобных долях мозга. Здесь ставятся цели, формируются программы собственной активности, осуществляется контроль за их протеканием и успешностью выполнения.

    Совместная работа всех трех функциональных блоков мозга составляет необходимое условие осуществления любой психической деятельности человека. Представляя мозговые механизмы психической деятельности, следует остановиться на вопросе о межполушарной асимметрии мозга. Работа больших полушарий построена по контрлатеральному принципу, т.е. левое полушарие отвечает за правую сторону телесной организации человека, правое полушарие - за левую. Установлено, что и в функциональном отношении оба полушария неравнозначны. Функциональная асимметрия, которая понимается как различное участие левого и правого полушария в осуществлении психической деятельности, представляет собой одну из фундаментальных закономерностей работы мозга человека и животных.

    В осуществлении любой психической деятельности участвует весь мозг в целом, однако разные полушария выполняют различную дифференцированную роль в осуществлении каждой психической функции. Например, в результате экспериментальных и клинических исследований было обнаружено, что правое и левое полушария различаются в стратегии переработки информации. Стратегия правого полушария состоит в целостном одномоментном восприятии предметов и явлений, эта способность воспринимать целое раньше его частей лежит в основе творческого мышления и воображения. Левое полушарие осуществляет последовательную рациональную обработку информации. Проблема межполушарной асимметрии и межполушарного взаимодействия далека от своего решения и требует дальнейших экспериментальных и теоретических исследований.

    Изучение мозговых механизмов, обеспечивающих психические процессы, не приводит к однозначному пониманию природы психического. Простого указания на мозг и нервную систему как на материальный субстрат психических процессов недостаточно для решения вопроса о характере взаимоотношения психического и нейрофизиологического.

    Русский физиолог И.П. Павлов поставил перед собой задачу раскрыть сущность психического объективными физиологическими методами исследования. Ученый пришел к выводу, что единицами поведения являются безусловные рефлексы как реакции на строго определенные раздражители из внешней среды и условные рефлексы как реакции на первоначально безразличный раздражитель, который становится небезразличным вследствие его неоднократного сочетания с безусловным раздражителем. Условные рефлексы осуществляются высшими отделами мозга и основываются на образующихся между нервными структурами временных связях.

    Важным вкладом в решение проблемы нейрофизиологических механизмов психики являются работы отечественных ученых Н.А.Бернштейна и П.K.Анохина.

    Н.А.Бернштейн изучал естественные движения человека и их физиологическую основу. До Н.А.Бернштейна механизм движения описывался схемой рефлекторной дуги:

    1. прием внешних воздействий;
    2. процесс их центральной переработки;
    3. двигательная реакция.

    Н.А.Бернштейн предложил новый принцип нейрофизиологического управления движениями, который был назван принципом сенсорных коррекций. В его основу легло положение о том, что движения управляются не только и не столько эфферентными импульсами (командами, исходящими от центральных отделов к периферии), а в первую очередь - афферентными (сигналами о внешнем мире, которые поступают в мозг в каждый момент выполнения движения). Именно афферентные сигналы и составляют «следящее устройство», которое обеспечивает непрерывную коррекцию движения, отбирая и меняя нужные траектории, регулируя систему напряжений и ускорений в соответствии с меняющимися условиями выполнения действия.

    Но афферентные импульсы являются лишь частью того, что составляет механизм организации произвольных движений. Существен тот факт, что движения и действия человека не «реактивны», - они активны, целенаправленны и меняются в зависимости от замысла. Принцип активности противопоставляется принципу реактивности, согласно которому тот или иной акт, движение, действие определяется внешним стимулом и осуществляется по модели условного рефлекса, и преодолевает понимание процесса жизнедеятельности как процесса непрерывного приспособления к среде. Главное содержание процесса жизни организма - это не приспособление к среде, а реализация внутренних программ. В ходе такой реализации организм неизбежно преобразует среду.

    П.К.Анохиным была создана теория функциональных систем, явившаяся одной из первых моделей подлинной психологически ориентированной физиологии. Согласно положениям этой теории физиологическую основу психической деятельности составляют особые формы организации нервных процессов. Они складываются при включении: отдельных нейронов и рефлексов в целостные функциональные системы, которые обеспечивают целостные поведенческие акты. Исследования ученого показали, что поведение индивида определяется не отдельным сигналом, а афферентным синтезом всей доходящей до него в данный момент информации. Афферентные синтезы запускают в ход сложные виды поведения. В итоге П.К.Анохин пришел к выводу о необходимости пересмотра классических представлений о рефлекторной дуге. Он разработал учение о функциональной системе, под которой понималась динамическая организация структур и процессов организма. Согласно этому учению движущей силой поведения могут быть не только непосредственно воспринимаемые воздействия, но и представления о будущем, о цели действия, ожидаемый эффект поведенческого акта. При этом поведение вовсе не заканчивается ответной реакцией организма. Ответная реакция создает систему «обратной афферентации», сигнализирующей об успехе или неуспехе действия, составляет акцептор результата действия.

    Процесс сличения модели будущего с эффектом выполненного, действия является существенным механизмом поведения. Только при условии их полного совпадения действие прекращается. Если же действие оказывается неудачным, то происходит «рассогласование» модели будущего и результата действия. Поэтому действие продолжается, в него вносятся соответствующие коррективы. Рефлекторную дугу П.К.Анохин заменил более сложной схемой рефлекторного кольца, объясняющей саморегулирующийся характер поведения.

    Теория функциональных систем П.К.Анохина создала новую - системную - методологию изучения целостных поведенческих актов. В работах ученого было показано, что любая целостная деятельность организма осуществляется только при избирательной интеграции многих частных физиологических механизмов в единую функциональную систему.

    Несмотря на неоспоримость того, что мозг является органом психического отражения, взаимосвязь психического и нейрофизиологического должна рассматриваться с позиций самостоятельности и специфичности каждого из этих процессов. Психическое невозможно свести к обеспечивающим его морфофункциональным структурам, работа мозга не является содержанием психики. Психическое отражает не физиологические процессы, протекающие в организме человека, а объективную реальность. Специфическое содержание психического заключается в представленности образов мира и субъективного отношения к нему. Как писал философ А.Г.Спиркин, «в коре мозга нейрохирург видит не яркие мысли наподобие духовного пламени, а всего лишь серое вещество».



    Loading...Loading...