Как работает датчик пульса смартфоне. Рейтинг лучших нагрудных пульсометров

А вы знали, что от бега бывают шрамы? Причем на грудной клетке. Конечно, не от самого бега, а от нагрудного пульсометра. Зачем нужны тренировки по пульсу, можно прочитать в .

Мне не повезло иметь конструкцию, при которой лента натирает, особенно на длинных дистанциях. Длительная тренировка около 30 км с пульсометром - гарантированные кровь-кишки натертости, боль в процессе и долго заживающие шрамы. Пробовала менять ленты, надевать ленту чуть выше и ниже, затягивать сильнее и слабее - безрезультатно. К тому же, нагрудный датчик пульса нужно регулярно стирать и менять в нем батарейку. Иначе он начинает бредить, часто в самый ответственный момент.

Все это изрядно раздражает, поэтому я давно хотела попробовать альтернативный вариант - оптический пульсометр . Выбор пал в пользу устройства Scosche Rhythm+ , которое мне удачно подарили на день рождения 😉 Что из этого получилось, читайте ниже. Осторожно: много графиков!

Как работает нагрудный датчик пульса

Нагрудный датчик пульса , он же нагрудный кардиомонитор (HRM strap, HRM band) - это эластичный ремень с двумя электродами в виде полосок из проводящего материала и кардиопередатчиком. Технология его работы построена на таком явлении как электрическая активность сердца, обнаруженном в конце 19 века.

Датчик крепится на груди, электроды увлажняются водой или специальным гелем для лучшей проводимости. В момент сокращения сердечной мышцы на коже регистрируется разность потенциалов - таким образом происходит измерение частоты пульса. С датчика информация по беспроводной технологии непрерывно передается на принимающее устройство: часы, велокомпьютер, фитнес-браслет, смартфон и т.п.

Как работает оптический датчик пульса

Оптический датчик пульса с помощью светодиодов просвечивает кожный покров мощным пучком света. Затем происходит измерение отраженного количества света, рассеянного кровотоком. Технология строится на том, что рассеивание света в тканях происходит определенным образом в зависимости от динамики кровотока в капиллярах, что позволяет отследить изменения пульса.

Оптические датчики требовательны к плотному прилеганию к коже (не работают через одежду) и расположению. Их работа построена на определении кровотока в тканях, поэтому чем больше тканей доступно для считывания, тем лучше.

Нагрудный и оптический датчик пульса для бегуна: сравним?

Почему Scosche RHYTHM+, а не встроенный в спортивные часы датчик пульса?

Самый очевидный вариант при выборе оптического пульсометра - купить спортивные часы со встроенным датчиком. Большинство относительно новых моделей часов известных производителей уже включают в себя эту опцию. На первый взгляд, удобно: все в одном, не нужно отдельно заряжать и надевать на себя еще одно устройство.

Но если присмотреться, то такой вариант имеет свои подводные камни. Первым из них для меня стало то, что оптический пульсометр должен плотно прилегать к коже, через ткань, даже самую тонкую, он не работает.

Мои основные тренировки обычно приходятся на конец осени и зиму - подготовка к весеннему марафону. К жаре адаптируюсь плохо, летом бегаю больше для поддержания, а прогресс и улучшение формы удается получить только по холодной погоде.

Часы при этом всегда ношу поверх рукава лонгслива или ветровки. Задирать рукав каждый раз, чтобы посмотреть на показания пульса и темпа - вообще не вариант. Особенно это касается бега на ПАНО, где пульс должен попадать в достаточно узкий коридор и его нужно все время контролировать, чтобы не ускакал выше.

Вторая причина, почему мне не подходит встроенный в часы датчик, обнаружилась уже во время тестирования, о ней ниже.

Оптический датчик пульса Scosche RHYTHM+: краткий обзор

Полное название устройства: Scosche RHYTHM+ Dual ANT+/Bluetooth Smart Optical HR .

Было выпущено в 2014 году. До сих пор считается одной из самых удачных и точных моделей среди оптических датчиков пульса. Подробнее можно почитать в мега-основательном обзоре на сайте Рэя , который DCRainmaker.

Так выглядит Scosche RHYTHM+, просто и с минимумом наворотов

Scosche RHYTHM+ — отдельное устройство в виде браслета с оптическим датчиком, которое надевается на руку и передает показания на любой гаджет, поддерживающий технологию ANT+ или Bluetooth Smart. Фактически это все современные спортивные часы, смартфоны (iPhone 4s и выше, Android 4.3 и выше) и другие устройства. Также работает с любыми приложениями, поддерживающими измерение пульса. Короче, полностью универсальная штука.

Scosche RHYTHM+ имеет три оптических сенсора

В комплекте к датчику идет USB зарядка, заявленное время работы 7-8 часов . Минус: индикация уровня заряда отсутствует. Я вышла из положения, просто ставя Scosche на зарядку после каждой тренировки.

Scosche RHYTHM+ на USB зарядке

По характеру Scosche - типичный интроверт. Все взаимодействие с внешней средой происходит при помощи единственного огонька, который во время зарядки устройства изредка мигает красным, во включенном состоянии — красным и синим, при выключении - снова красным, но чаще. Кнопка тоже одна, для включения достаточно просто нажать ее, для выключения - нажать и подержать. Другая коммуникация с устройством не предусмотрена, любители минимализма и голой функциональности оценят.

Размер браслета датчика регулируется при помощи липучек

Тестирование оптического датчика пульса Scosche RHYTHM+

Чтобы оценить точность оптического датчика по сравнению с нагрудным, я пошла самым простым путем: нацепила на себя двое часов, оба датчика и отправилась на пробежку. Scosche передавал показания пульса на Garmin 920XT, нагрудный датчик - на старый заклеенный изолентой заслуженный Garmin Forerunner 410.

Набор юного исследователя: часы 2 шт, датчики пульса 2 шт

В результате со всех тренировок было получено по два графика пульса - по версии каждого из датчиков. Затем для наглядного сравнения графики были наложены друг на друга. Подразумеваем, что показатели нагрудного пульсометра условно точны. Хотя с ним тоже не все так однозначно, как можно убедиться на одном из примеров ниже.

Почувствуй себя гиком. Весь январь бегала с двумя часами

За месяц были получены данные с разных типов тренировок :

  • трусца на низком пульсе
  • легкий бег на уровне аэробного порога (АП), в том числе с короткими ускорениями по 20-30 секунд (страйдами)
  • бег в марафонском темпе
  • темповый бег на уровне анаэробного порога (ПАНО)
  • МПК-интервалы по 1 км
  • повторы по 400 м

Посмотрим, что получилось.

Часть 1, неудачная

Если сидеть, стоять или ходить, то показания Scosche и нагрудного пульсометра совпадают практически полностью, отклонение не более одного удара (оптический датчик чуть запаздывает).

Пока не бежишь, датчики меряют одинаково

Попытка №1: легкий бег на аэробном пороге

Расположение по инструкции

На первую тестовую тренировку я надела только оптический датчик, т.к. уже пару раз успела с ним побегать, показания были вменяемые, подставы не ожидала.

Почти сразу начались глюки, но через пару километров вроде бы все устаканилось. Ровный бег на 150-154 по ровному Труханову, пробежала около 8 км, и тут бах! пульс подпрыгивает под 180 и не снижается. Задумалась, бежать в больницу или вызывать скорую на место. Для справки: до 180+ мое сердце удается разогнать только на интервалах по 1 км, ну или на финишном ускорении на соревнованиях. И это явно не медитативный бег и единение с природой, а счет выдохов, чтобы отвлечь мозг и дотерпеть последние несколько сот метров.

Показания оптического датчика при беге на АП, расположение по инструкции

На графике видно, что я 3 раза останавливалась, пыталась как-то поправить датчик, но безуспешно. Дальше бежала по темпу, пульс колебался от 175 до 180 . Почему именно эти устрашающие цифры? А потому, что примерно такой у меня каденс . Видимо, из-за неудачного (в моем случае) расположения при движениях рукой на датчик как-то хитро попадает свет, и он считает эти колебания вместо пульса.

Вывод: размещение датчика по инструкции мне не подходит.

Попытка №2: трусца

Расположение датчика: на запястье - как у встроенного в спортивных часах

Расположение как в часах, плотная фиксация с помощью подручных материалов

Результат еще печальнее, правильных показаний не было вообще, сплошной каденс. На графике пульса с нагрудного датчика (синем) все четко: видны подъемы и спуски с лестниц, остановка на светофоре.

Показания оптического (красный график) и нагрудного датчиков (синий) при трусце, расположение на запястье

Уже позже прочитала, что часы со встроенным датчиком рекомендуют надевать чуть выше, чем обычно, чтобы для считывания было доступно больше тканей. В моем случае это не помогает: и там, и там дефицит мягких тканей, одна кожа и кости 🙂

Вывод: размещение датчика на запястье (и часы со встроенным оптическим датчиком) мне не подходит.

Попытка №3: разминка / темповая работа на ПАНО 5 + 3 + 3 км / заминка

Расположение датчика: на бицепсе, с внутренней стороны. Подсмотрела такой вариант у Рэя (ссылка на его обзор выше), у него он работает. У меня - снова безобразие.

Показания оптического (красный график) и нагрудного датчиков (синий) при работе на ПАНО, расположение на внутренней стороне бицепса

Попытка №4: снова трусца

Расположение датчика: немного выше локтя, сбоку (спереди)

Местами Scosche даже работал правильно, но не удержался, чтобы не изобразить на графике темповую тренировку.

Показания оптического (красный график) и нагрудного датчиков (синий) при трусце, расположение выше локтя спереди

Здесь я задолбалась расстроилась и нажаловалась в фейсбуке на все эти продвинутые технологии. Автор подарка, который сам бегает с таким же пульсометром уже больше года, подсказал, что надевает его так, чтобы датчик располагался на внешней стороне бицепса. Ладно, еще одна попытка. И вуаля! Это помогло.

Часть 2, удачная

Расположение оптического датчика, которое у меня работает

Попытка №5: еще одна трусца

Расположение датчика: с внешней стороны бицепса

Идеальное совпадение графиков, включая отработку лестниц и переходов

Показания оптического (красный график) и нагрудного датчиков (синий) при трусце, расположение с внешней стороны бицепса

Попытка №6: темповая на ПАНО 5 + 3 + 3 + 1 км

Расположение датчика: там же

У нагрудного пульсометра получился чуть более сглаженный график, но все средние показатели на км совпадают.

Показания оптического (красный график) и нагрудного датчиков (синий) при темповой работе на ПАНО, расположение с внешней стороны бицепса

Попытка №7: легкий бег на АП + 6 коротких ускорений по 20-30 сек.

Расположение датчика: там же

Единственное различие в том, что оптический показывает более высокий пульс на страйдах. Кто из них прав, не знаю, но это не принципиально — для коротких ускорений пульс абсолютно не важен.

Показания оптического (красный график) и нагрудного датчиков (синий) при беге на АП с короткими ускорениями, расположение с внешней стороны бицепса

Попытка №8: интервалы 5х1км + повторы 4х400м

Расположение датчика: там же

На интервалах график с показателями оптического пульсометра чуть более «забористый», и есть небольшие запаздывания. Впрочем, отклонения мелкие, и на общую картину никак не влияют.

Показания оптического (красный график) и нагрудного датчиков (синий) при интервалах 5х1км, расположение с внешней стороны бицепса

А вот на повторах несовпадение графиков уже серьезнее, хотя, как и в случае с короткими ускорениями, по пульсу их никто не бегает.

Показания оптического (красный график) и нагрудного датчиков (синий) при повторах 4х400м, расположение с внешней стороны бицепса

Попытка №9: разминка / 13 + 5 км в марафонском темпе / заминка

Расположение датчика: там же

Здесь редкий случай - глюк нагрудного датчика . Его видно в начале синего графика, где пульс на разминке улетает на 180.

Как уже упоминалось, электроды нагрудного датчика для лучшей электропроводимости нужно смачивать - либо специальным гелем, либо водой. Лично я на них чаще всего просто плюю (пардон за натурализм), надеваю ленту и почти сразу выхожу на тренировку. Если не смочить электроды заранее, то поначалу пульсометр может глючить, но потом они увлажнятся естественным образом - с помощью пота.

Алгоритм был нарушен: в уже полностью одетом виде меня застал телефонный звонок, и выйти получилось только минут через 15. Лента высохла, да и на улице самоувлажняться не спешила из-за холода. Там видно еще одну остановку в самом начале М-темпа - тоже из-за телефона. При более высокой интенсивности процессы пошли быстрее, и нагрудный датчик пришел в чувство.

Еще был непонятный прыжок пульса по версии оптики во время легкого бега между работами - причину не нашла.

Показания оптического (красный график) и нагрудного датчиков (синий) при М-темпе, расположение с внешней стороны бицепса

Пожалуй, на этом с графиками пора завязывать.

С тех пор я полностью перешла на Scosche и попрощалась со шрамами. С подобранным местом расположения оптического датчика его показатели достаточно точны для моих целей, никаких заметных глюков больше не наблюдалось. Надеюсь скоро пробежать с ним марафон и наконец-то узнать, с каким пульсом я это делаю (до этого ни разу не бегала 42 км с пульсометром по понятным причинам).

Плюсы/минусы оптического датчика по сравнению с нагрудным

Удобство: не натирает, не сползает, не мешает

В нем не разряжается батарейка, что случается редко, но в самый неподходящий момент

Его не нужно стирать, в отличие от нагрудного, который в просоленном состоянии может показывать некорректные данные (при активных тренировках стираю ленту раз в неделю)

Его не нужно смачивать перед использованием

При подборе удачного места размещения оптический датчик достаточно точен для решения задач бегуна-любителя

Нагрудный или оптический пульсометр?

— нагрудный датчик по умолчанию точнее, технология его работы не требует танцев с бубном подбора оптимального расположения на теле и идеального прилегания

— оптический датчик в виде устройства (не встроенный в часы) нужно отдельно заряжать, а это еще +1 зарядка ко всей имеющейся куче проводов

Плюсы оптического датчика Scosche по сравнению со встроенным в часы

Путем экспериментов можно подобрать оптимальное место размещения, при котором показания будут наиболее точны. В случае с часами со встроенным датчиком пульса варианты ограничиваются запястьем - не у всех оптика работает корректно в этом месте (я тому пример).

Оптический датчик в виде отдельного устройства можно надевать под одежду, при этом показания выводятся на часы, надетые поверх рукава. Часы со встроенным датчиком должны прилегать к телу, что делает их использование в холодное время года неудобным.

А вы пробовали пользоваться оптическим пульсометром? Как впечатления?

Хотите получать обновления блога на почту? .

Пульс - это ритмичные колебания стенок кровеносных сосудов, происходящие во время сокращений сердца. Измерения пульса очень важны для диагностики сердечно-сосудистых заболеваний. Важно следить за изменениями сердечного ритма, чтобы не допустить перегрузки организма, особенно во время занятий спортом. Один из понятных параметров пульса – частота пульса. Измеряется в количестве ударов в минуту.

Рассмотрим доступный датчик для измерения сердечного ритма – Pulse Sensor (рисунок 1).

Рисунок 1. Датчик пульса

Это аналоговый датчик, основанный на методе фотоплетизмографии - изменении оптической плотности объема крови в области, на которой проводится измерение (например, палец руки или мочка уха), вследствие изменения кровотока по сосудам в зависимости от фазы сердечного цикла. Датчик содержит источник светового излучения (светодиод зеленого цвета) и фотоприемник (рис. 2), напряжение на котором изменяется в зависимости от объема крови во время сердечных пульсаций. Это график (фотоплетизмограмма или ППГ-диаграмма) имеет форму, представленную на рис. 3.

Рисунок 2.

Рисунок 3. Фотоплетизмограмма

Датчик пульса усиливает аналоговый сигнал и нормализует относительно точки среднего значения напряжения питания датчика (V/2). Датчик пульса реагирует на относительные изменения интенсивности света. Если количество света, падающего на датчик остается постоянным, величина сигнала будет оставаться вблизи середины диапазона АЦП. Если регистрируется большая интенсивность изучения, то кривая сигнала идет вверх, если меньше интенсивность, то, наоборот, кривая идет вниз.

Рисунок 4. Регистрация удара пульса


Наш датчик пульса мы будем использовать для измерения частоты пульса, фиксируя промежуток между точками графика, когда сигнал имеет значение 50% от амплитуды волны во время начала импульса.

Технические характеристики датчика

  • Напряжение питания - 5 В;
  • Ток потребления - 4 мА;

Подключение к Arduino

Датчик имеет три вывода:
  • VCC - 5 В;
  • GND - земля;
  • S - аналоговый выход.
Для подключения датчика пульса к плате Арудино необходимо контакт S датчика подсоединить к аналоговому входу Arduino (рисунок 5).

Рисунок 5. Подключение датчика пульса к плате Arduino

Пример использования

Рассмотрим пример определения значения частоты импульса и визуализации данных сердечного цикла. Нам понадобятся следующие детали:
  • плата Arduino Uno
  • датчик пульса
Сначала подключим датчик пульса к плате Arduino согласно рис. 6. Загрузим на плату Arduino скетч из листинга 1. В данном скетче мы используем библиотеку iarduino_SensorPulse.

Листинг 1
//сайт // подключение библиотеки #include // создание экземпляра объекта // подключение к контакту A0 iarduino_SensorPulse Pulse(A0); void setup() { // запуск последовательного порта Serial.begin(9600); // запуск датчика пульса Pulse.begin(); } void loop() { // если датчик подключен к пальцу if(Pulse.check(ISP_VALID)==ISP_CONNECTED){ // печать аналогового сигнала Serial.print(Pulse.check(ISP_ANALOG)); Serial.print(" "); // печать значения пульса Serial.print(Pulse.check(ISP_PULSE)); Serial.println(); } else Serial.println("error"); } Вывод данных в монитор последовательного порта Arduino (рис. 6).

Рисунок 6. Вывод данных аналогового значения и частоты пульса в монитор последовательного порта.

Для получения графика фотоплетизмограммы на экране компьютера будем использовать хорошо знакомую Ардуинщикам среду программирования Processing, похожую на Arduino IDE. Загрузим на плату Arduino скетч (PulseSensorAmped_Arduino_1dot1.zip), а на компьютере из Processing загрузим скетч (PulseSensorAmpd_Processing_1dot1.zip). Передаваемые с платы Arduino в последовательный порт данные, мы будем получать в Processing и строить график (рис. 7).

Рисунок 7. Визуализация данных в Processing.

Еще один вариант визуализации (для компьютеров Mac) – программа Pulse Sensor. Она также получает данные, приходящие в последовательный порт от Arduino (скачать скетч PulseSensorAmped_Arduino_1dot1.zip) и выводит график, уровень сигнала и значение пульса (рис. 8).

Рисунок 8. Визуализация данных с датчика пульса в программе Pulse Sensor.

Часто задаваемые вопросы FAQ

1. Не горит зеленый светодиод датчика пульса
  • Проверьте правильность подключения датчика пульса.
2. Выводимые значения с датчика пульса "скачут"
  • Для создания постоянного (неменяющегося) внешнего фона освещения оберните датчик с одной стороны черной лентой.

3. Явно неверные показания с датчика пульса
  • Прикладывать датчик пульса следует правильно – между центром подушечки и изгибом пальца.

Время на чтение: 21 минута

Пульсометр – это измерительный прибор, который определяют частоту сердечных сокращений. Его еще называют монитором сердечного ритма (heart rate monitor) .

Пульсометр используют для контроля работы сердца, анализа нагрузок, определения зон пульса и выхода за рамки этих зон. На рынке спортивной атрибутики продается большое количество разнообразных моделей для мониторинга сердечного ритма. Давайте разберемся, для чего нужен пульсометр, в чем его преимущества и польза, как его выбрать, а также рассмотрим самые популярные модели пульсометров на рынке.

Пульсометр: для чего нужен и какие преимущества

Если вам нужна информация о работе вашего сердца во время тренировки, то такой прибор как пульсометр вам просто необходим. Во время тренировок монитор сердечного ритма помогает поддерживать нужное значение пульса, измеряет количество сожженных калорий и контролирует работу сердца и нагрузку. Чаще всего пульсометр используется во время интервальных и кардио-тренировок, но и во время силовых нагрузок он будет совсем не лишним. Кроме того, пульсометр можно использовать во время дневной активности для контроля работы сердца.

Кому может понадобиться пульсометр?

  • Тем, кто занимается кардио-тренировками для похудения или развития выносливости.
  • Тем, кто занимается высокоинтенсивными интервальными тренировками (ВИИТ).
  • Тем, кто имеет проблемы с сердцем и должен контролировать частоту сердечных сокращений.
  • Тем, кто хочет контролировать количество сожженных калорий во время тренировки.
  • А также тем, кто хочет регулярно улучшать свои результаты без вреда для здоровья.

Зачем вообще необходимо замерять пульс во время тренировки? В зависимости от пульса или частоты сердечных сокращений (сокращенно ЧСС) ваш организм будет использовать разные источники энергии. Исходя из этого, есть несколько зон нагрузки, которые определяют эффективность вашей тренировки:

Указанный процент берется от значения максимальной частоты сердечных сокращений. Для ее расчета воспользуемся формулой: Максимальная ЧСС = 220 – возраст.

Соответственно, чтобы организм в качестве источника использовал жирные кислоты, достаточно держать пульс в зоне 60-70% от максимальной ЧСС. Например, если ваш возраст 30 лет, то для расчетов возможного диапазона вашего пульса применим следующие расчеты:

  • Нижний порог = (220-30)*0,6=114
  • Верхний порог = (220-30)*0,7=133

При таком пульсе (114-133 удара в минуту) вы можете заниматься длительное время, поддерживая беспрерывный темп. В этом случае нагрузка будет аэробная, то есть с использованием кислорода. Такие кардио-тренировки помогают сжигать жир и тренировать сердце.

Если вы занимаетесь высокоинтенсивными интервальными тренировками (например, тренировки по протоколу Табата), то в моменты пика ваш ЧСС должен находиться в анаэробной зоне, т.е. 80-90% от максимальной ЧСС:

  • Нижний порог = (220-30)*0,8=152
  • Верхний порог = (220-30)*0,9=171

Пульсометр помогает следить за своим пульсом и поддерживать его в той зоне, которая отвечает вашим требованиям. Если модель пульсометра позволяет, то можно выставить интересующие вас зоны пульса, и вы будете оповещены, когда ваш пульс будет выходить из заданной зоны.

Преимущества пульсометра:

  • Монитор сердечного ритма защищает сердце от перегрузки во время тренировки, поскольку вы контролируете значение пульса.
  • Вы будете заниматься в нужной вам зоне пульса – для жиросжигания или выносливости в зависимости от ваших целей, а значит тренироваться более эффективно.
  • С пульсометром легко отслеживать свой прогресс, анализировать уровень нагрузки и ее восприятие организмом.
  • Вы будете точно знать, сколько калорий потрачено во время тренировки.
  • Вы можете использовать пульсометр во время обычной дневной активности для оценки работы организма или контроля нагрузок.
  • Пульсометр незаменим во время бега или быстрой ходьбы на улице, когда отсутствуют другие источники для определения уровня нагрузки.

На многих кардио-тренажерах уже установлен встроенный монитор сердечного ритма. Но во-первых, такие пульсометры показывают неточные данные, на которые лучше не ориентироваться. Во-вторых, для фиксации данных необходимо держаться за ручки во время бега или ходьбы, что не всегда удобно. Поэтому если вы хотите получать максимально точные данные по пульсу и калориям, то лучше приобрести монитор сердечного ритма.

Можно также использовать ручной мониторинг пульса. Для этого вам нужно остановиться и посчитать удары, зафиксировав полученные значения. Однако дополнительные манипуляции во время тренировки не всегда удобны, да и полученные значения будут иметь сильную погрешность. Кроме того, постоянные остановки снижают ваш пульс, что нарушает ритм занятия. Именно поэтому пульсометр незаменим: он будет фиксировать данные мгновенно на протяжении всей тренировки.

Основные функции пульсометра:

  • Мониторинг частоты сердечных сокращений (ЧСС)
  • Настройка зоны пульса
  • Уведомление о смене зоны пульса звуком или вибрацией
  • Расчет средней и максимальной ЧСС
  • Счетчик потраченных калорий
  • Отображение времени и даты
  • Секундомер, таймер

Некоторые пульсометры имеют дополнительные функции: GPS-навигация, будильник, шагомер, история тренировок, автоматический подсчет тренировочных зон, фитнес-тест, расчет ЧСС для отдельного круга (полезно для бегунов), синхронизация с приложениями и компьютером . Чем большими функциями оснащен прибор, тем он дороже по стоимости.

Виды пульсометров

Пульсометры можно разделить на 2 большие группы: нагрудные (с использованием нагрудного датчика) и запястные . Пульсометр с нагрудным ремнем пользуется бо льшей популярностью среди занимающихся, но благодаря новым технологиям появились модели, которые позволяют точно замерить пульс и без нагрудного датчика.

Нагрудный пульсометр представляет собой датчик с электродами, который одевается под грудью и передает данные на часы-приемник или мобильное приложение. Есть два типа моделей нагрудных пульсометров, которые отличаются по комплектации:

  • Пульсометр без часов-приемника. В этом случае данные передаются на смартфон посредством технологии Bluetooth Smart. Датчик синхронизируются со специальными приложениями в смартфоне, где в автоматическом режиме сохраняется вся необходимая информация о ЧСС и сожженных калориях. Это удобно для анализа тренировок, поскольку приложение хранит всю историю данных. Чаще всего пульсометры синхронизируются с приложениями на операционных системах Android и iOs.
  • Пульсометр с часами-приемником. В этом случае датчик отправляет данные на часы-приемник, где они обрабатываются, и вы можете видеть их на экране. Такие модели более дорогие, но и более удобные. Вам не нужно дополнительно использовать смартфон, вся информация будет высвечиваться на часах. Например, на улице такие пульсометры использовать удобнее.

Если вы приобретаете пульсометр с часами-примеником, то обратите внимание также на тип передачи данных. Есть два типа передачи данных с нагрудного датчика на часы:

  • Аналоговый (некодированный) тип передачи данных. Может быть подвержен радиопомехам. Считается менее точным, однако если погрешность и есть, то она совсем небольшая. Аналоговый пульсометр может синхронизироваться с кардио-тренажерами, подхватывая данные о сердечном ритме с вашего ремня. Но если в непосредственной близости от вас (в пределах метра) кто-то использует пульсометр с тем же типом передачи данных, например, на групповой тренировке, то могут возникать помехи.
  • Цифровой (кодированный) тип передачи данных. Более дорогой и точный тип передачи данных, не подвержен помехам. Однако пульсометр с цифровой передачей данных нельзя синхронизировать с тренажерами.

И аналоговые, и цифровые пульсометры достаточно точны, поэтому тип передачи данных не играет ключевой роли при выборе пульсометра. Дополнительно переплачивать за цифровой тип передачи данных не имеет смысла.

Запястные пульсометры

Удобство запястных пульсометров состоит в том, что вам не нужно надевать нагрудный ремень с датчиком. Для измерения данных вам понадобятся только часы, которые надеваются на запястье. Однако и такой вариант пульсометров имеет ряд особенностей и минусов, поэтому несмотря на кажущиеся удобства, запястные пульсометры пока пользуются меньшей популярностью.

Есть два типа запястных пульсометров, которые отличаются принципом мониторинга ЧСС:

  • Пульс замеряется при контакте пальцев и сенсора на лицевой стороне прибора. Вы просто надеваете пульсометр на запястье, касаетесь его, и прибор выдает вам значения пульса. Минус такого мониторинга заключается в том, что вы будете мерить пульс не в течение определенного периода времени, а по требованию, только после контакта пальцев и электродов на корпусе. Такой пульсометр больше подходит для туризма, альпинизма или для тех, кто из-за ограничений по здоровью вынужден периодически контролировать зону пульса.
  • Пульс замеряется с помощью слежения за кровеносными сосудами. Принцип работы таких пульсометров следующий: вы надеваете браслет на руку, светодиоды просвечивают кожу, оптический сенсор замеряет сужение сосудов и датчик выводит полученные значения на экран часов. Но и минусы таких приборов также очевидны. Для точности данных ремень должен быть жестко затянут на запястье, что не всегда удобно во время тренировки. Кроме того, сильное потоотделение или дождливая погода могут нарушить работу датчика.

Конечно, часы являются более привычным оборудованием, чем нагрудный ремень. Поэтому если вам дискомфортно ношение ремня под грудью, то рекомендуем приобрести второй вариант запястного пульсометра. Но дискомфорт и неудобство – едва ли не единственный аргумент в пользу запястного пульсометра. Большинство тренирующихся все же останавливают свой выбор на пульсометре с нагрудным датчиком из-за удобства и точности данных.

Цены на пульсометр определяются следующими параметрами:

  • Компания-производитель
  • Тип пульсометра: нагрудный или запястный
  • Комплектация: есть ли часы-приемник, сменные ремешки, чехлы и т.д.
  • Тип передачи данных: аналоговый или цифровой
  • Влагозащита
  • Ремень, его ширина, качество, удобство крепления
  • Качество корпуса часов-приемника
  • Наличие дополнительных функций

Пульсометры: подборка лучших моделей

Предлагаем вам подборку моделей пульсометров с кратким описанием, ценами и картинками. Исходя из этого обзора, вы сможете подобрать для себя подходящий монитор сердечного ритма. Цены указаны по данным Яндекс-маркета на сентябрь 2017 и могут отличаться от стоимости пульсометра в вашем магазине.

Пульсометры Sigma

Популярные модели пульсометров Sigma разрабатывает тайваньский производитель. Среди пульсометров Sigma считается одним из лидеров рынка, их модели практически идеальны по соотношению цены и качества. В основном они предлагают модели пульсометров с нагрудным ремнем и часами:

  • Sigma PC 3.11 : самая примитивная модель с базовой функцией подсчета частоты сердечных сокращений. Подсчет калорий не ведется.
  • Sigma PC 10.11 : оптимальная модель со всеми необходимыми основными функциями, в том числе подсчет средней и максимальной ЧСС, счетчик калорий, звуковой сигнал при нарушении целевой зоны ЧСС.
  • Sigma PC 15.11 : эта модель подойдет для любителей бега, поскольку здесь добавляются такие функции как счетчик кругов, средняя и максимальная ЧСС за круг, количество сожженных калорий за круг, время на круг.
  • Sigma PC 22.13 : в этом пульсометр используется цифровая передача данных, поэтому цена его немного дороже. Модель предлагается в нескольких цветовых вариантах корпуса. Функции стандартные: подсчет средней и максимальной ЧСС, счетчик калорий, индикатор зон, звуковой сигнал при нарушении целевой зоны ЧСС.
  • Sigma PC 26.14 : модель аналогичная предыдущей, но с добавлением новых функций. Например, в этом приборе есть счетчик кругов, автоматизированная функция для расчета целевой зоны, память для 7 учебных занятий, итоговые значения в неделю.

Пульсометры Polar

Polar – один из самых известных брендов на рынке пульсометров. Polar производит качественные приборы, но и цена их значительно выше. Вы можете приобрести нагрудный ремень с датчиком, который будет передавать данные на смартфон, или комплект из ремня и часов-приемника для более удобного отслеживания данных.

Нагрудные ремни с датчиком:

  • Polar H1 : интерфейс связи GymLink, поддежка Android и iOs, влагозащита.
  • Polar H7 : интерфейсы связи GymLink и Blutooth Smart, поддежка Android и iOs, влагозащита.
  • Polar H10 : новое поколения датчиков пульса, пришедшее на замену H7, один из поплярных моделей пульсометра.

Нагрудный пульсометр с часами в комплекте:

  • Polar A300 : помимо стандартных функций в данном приборе также есть много дополнительных «фишек»: шагомер, мониторинг сна, функция напоминания, установка целей, акселерометр. Также есть возможность соединения со смартфоном по Bluetooth.
  • Polar FT60 : в эту модель включена функция счетчика калорий, а также ряд вспомогательных, но очень удобных и полезных функций, таких как: будильник, второй часовой пояс, индикатор низкого уровня заряда батареи, блокировка кнопок от случайного нажатия.
  • Polar M430 : еще один очень многофункциональный гаджет, влагозащищенный, с GPS-навигацией и подсветкой. Добавлена функция уведомления о входящих звонках, полученных сообщениях и уведомлениях из приложений для социальных сетей GPS.

Пульсометры Beurer

В этом бренде представлены модели пульсометров с нагрудным ремнем и модели, в которых для измерения данных нужно дотронуться до сенсора прибора. Для тренировок мы рекомендуем выбирать пульсометры с нагрудным ремнем, это удобнее и практичнее.

  • Beurer PM25 : простая и удобная модель, есть все важные функции, например, встроенный календарь, часы, будильник, секундомер, счетчик калорий, оповещение при выходе за пределы зоны тренировки.
  • Beurer PM45 : набор функций похож с моделями PM25, но добавляются сменные ремешки, крепление на велосипед, футляр для хранения.
  • Beurer PM15 : это запястный пульсометр с касанием сенсора, прибор контролирует частоты сердцебиения, оповещает при выходе за пределы зоны тренировки, но калории не считает. Цена: 3200 рублей.

Пульсометры Suunto

Еще одна известная компания на рынке спортивного снаряжения, которая выпускает серию спортивных часов с возможностью измерения пульса. Suunto предлагает нагрудные датчики и нагрудные датчики в комплекте с часами:

  • Suunto Comfort Belt : нагрудный датчик, который подходит для всех моделей часов спортивной T-серии и для компьютеров, которые можно использовать как пульс-монитор.
  • Suunto Smart Belt : нагрудный датчик с технологией Bluetooth Smart. Совместим с приложением Movescount от Suunto.
  • Suunto M2 : нагрудный датчик с часами, который имеет все основные функции, в том числе контроль ЧСС, подсчет калорий, автоматический выбор нужной зоны ЧСС.
  • Suunto M5 : этот пульсометр оснащен дополнительным функциями, которые помогут вам определить оптимальный режим тренировок с учетом ваших индивидуальных показателей, а также получить достоверную информацию о скорости и расстоянии во время беговых тренировок.

Пульсометры Sanitas

У компании Sanitas не так много моделей, но они отличаются невысокой ценой, поэтому мы также их упоминаем.

  • Sanitas SPM22 и SPM25 : пульсометр с нагрудным ремнем, который включает в себя все основные функции и отлично подойдет для регулярного использования.
  • Sanitas SPM10 : для измерения пульса с этой моделью вам не потребуется нагрудный ремень. Вы просто надеваете прибор на запястье и касаетесь пальцем сенсора на лицевой стороне прибора. Такой прибор подходит для людей, которые не хотят носить нагрудный пояс или, например, для туризма.

Другие модели

  • Nexx HRM-02. Бюджетный вариант нагрудного ремня с датчиком, который подойдет тем, кто не готов серьезно тратиться на фитнес-гаджеты. Прибор имеет встроенный Bluetooth Smart и совместим практически со всеми мобильными приложениями, поддерживающими функцию передачи данных от беспроводного пульсометра. Считает пульс и сожженные калории.
  • Torneo H103 . Нагрудный датчик с часами-приемником. Наделен всеми основными функциями: расчет ЧСС, счетчик калорий, установка зон пульса, измерение времени в целевой зоне, секундомер, календарь и будильник, водонепроницаемость.
  • Wahoo TICKR . Еще один вариант нагрудного пульсометра, который передает информацию через Bluetooth на смартфон. Помимо пульса ведется учет таких характеристик, как пройденные шаги и сожженные калории.

Какой же пульсометр выбрать:

  • Если вы хотите приобрести пульсометр с оптимальным соотношением цены и качество, то покупайте модели Sigma или Beurer.
  • Если вы хотите приобрести максимально надежный и точный прибор, то покупайте модели Polar или Suunto.
  • Если вы хотите приобрести самый простой и недорогой вариант монитора сердечного ритма, стоит обратить внимание на модели, которые предлагаются на сайте Aliexpress (обзор ниже).

Пульсометры: подборка лучших моделей на Aliexpress

Предлагаем вам подборку мониторов сердечного ритма, которые можно приобрести на Aliexpress по доступной цене. Все пульсометры имеют схожие функции и находятся примерно в одном ценовом диапазоне, поэтому предлагаем вам ориентироваться на отзывы покупателей, среднюю оценку товара и общее количество заказов данного товара.

Нагрудный датчик без часов

Если вы приобретаете нагрудный датчик без часов, то данные о сердечном ритме будут отправляться на приложение в смартфоне. Нагрудные датчики совместимы со всеми устройствами с системой Bluetooth Smart (4.0) и ANT. Представленные датчики достаточно точные в измерениях пульса.

Предлагаем вам обратить внимание на следующие нагрудные датчики:

По многочисленным просьбам читателей нашего блога, в дополнение к материалам по самостоятельной сборке электрокардиографа , публикуем все необходимое для сборки пульсометра. Измерять ЧСС будем оптическим методом "на отражение". В качестве датчика используется светодиод и фотоприемник, монтируемые в корпус прибора. Вы же можете сделать свой датчик любой другой конструкции (например, датчик "на просвет" из бельевой прищепки). Вашему вниманию представляем первую публичную (на самом деле - восьмую опытную) версию устройства "Pulse Lite" .

Уважаемые радиолюбители, обращаю ваше внимание, что фотоплетизмограф - устройство сложное , в котором при сборке можно наделать массу ошибок, и с "двух пинков" оно не заведется. Если вы собираетесь собирать устройство из того, что у вас есть под рукой, заменяя приведенные на принципиальной схеме детали и номиналы, учтите, что, скорее всего, устройство работать не будет. Даже домашний кардиограф "ECG Lite" в этом плане намного менее привередлив. Не следует потом пенять на разработчиков за потраченное впустую время, текстолит и радиодетали. Если Вам нужен пульсометр из парочки усилителей, светодиода и фотоприемника, используйте другие схемы, .

Первые трудности

Пару слов о том, почему фотоплетизмограф намного сложнее, чем кардиограф, с точки зрения схемотехники.

Вспомним, что электрокардиограф регистрирует электрические потенциалы, наводимые электрической активностью сердечной мышцы на теле. Эти самые бипотенциалы не имеют сильных отличий у разных людей, и в норме амплитуда сигнала (от конечностей) составляет 1 ± 0,2 мВ.

Пульсограф регистрирует сигналы оптическим методом - фотоприемник регистрирует изменение интенсивности света (в качестве источника выступает светодиод), прошедшего через палец (или рассеянного им - для датчика "на отражение"), вызванное насосной работой нашего сердца - периодическим увеличением кровенаполнения тканей.

Казалось бы, ничего сложного, если бы не два главных "НО" . Кровенаполнение, эластичность сосудов, давление и, самое главное, - толщина кожного покрова у людей отличаются чрезвычайно сильно . Это приводит к тому, что уровень постоянной засветки фотоприемника (на который влияет наша кожа и размер пальцев) и уровень переменной составляющей (давление, сосуды, состояние кровоснабжения в конечностях и проч.) отличаются у разных людей в сотни раз.

Для создания пульсографа нужны цепи формирования сигнала (драйвер) источника света, сложные инфра-низкочастотные усилители (ЭКГ - более высокочастотный сигнал), цепи, подавляющие помехи от постоянной засветки сторонних источников; а также хитрые цепи автоматической регулировки усиления.
Можете, для интереса, сравнить цены профессиональных кардиографов и пульсоксиметров (последние - намного дороже).
Надеюсь, мы вас достаточно напугали 🙂 , чтобы пропало желание собрать фотоплетизмограф самому. Не пропало? Тогда читайте дальше.

Характеристики прибора

Если вы все сделали правильно - без ошибок в плате и изменений схемы и без бракованных деталей, то на выходе вы получите устройство, которое порадует Вас следующими фичами:

  • регистрирует пульсовую волну датчиком, состоящим из светодиода и фотоприемника (можно делать датчик на просвет или на отражение);
  • передает сигнал в ПК по USB, а ПО для ПК умеет немало:
  • вычисляет мгновенную ЧСС;
  • выполняет контурный анализ пульсовой волны и анализ вариабельности сердечного ритма;
  • записывает фотоплетизмограмму любой длительности в файл;
  • выполняет автоматизированную диагностику (база диагнозов настраивается);
  • выводит на печать результаты исследований.

Ограничения данного компьютерного пульсографа:

  • не работает с прищепками Nellcor и ушными клипсами с Aliexpress!
  • не работает с последней версией программы Pulse Lite Control!
  • не измеряет оксигенацию!

Еще раз повторюсь: схема, плата и прошивка пульсометра - первой хорошо отлаженной версии фотоплетизмографа "Pulse Lite" , поэтому с прищепкой Nellcor не работает, с последней версией ПО тоже не работает. "Открывать" последнюю версию пульсографа Pulse Lite не планируем.

Все для самостоятельного изготовления

Принципиальную схему и всё необходимое для изготовления платы в домашних условиях по ЛУТ (в формате pdf) качайте по данной ссылке. В архиве находятся, помимо схемы, готовые к распечатке (учтите, зеркалить уже ничего не нужно, печатать без масштабирования, т.е. 1:1!) верхняя и нижняя стороны платы, карта переходных отверстий (вид сверху и снизу), карта расположения элементов.

Хитрости при построении схемных решений

Автор этих строк предполагает, что вы уже скачали и увидели электрическую схему фотоплетизмографа. Если вы читаете дальше, значит, желание сделать прибор все еще не пропало, и это не может не радовать 🙂 . Только таким упорным читателям мы и откроем главные тайны создания нашего девайса. Итак, чтобы принципиальная схема фотоплетизмографа стала более понятной, проясним самые важные технические решения и причины, побудившие внедрить таковые в наш прибор.

Одна из проблем фотоплетизмографии уже была нами озвучена - это чувствительность прибора к засветкам сторонних источников, влияние которых очень сложно исключить столь очевидным применением фильтрующих цепей, потому что полезный сигнал лежит в том же диапазоне частот, что и НЧ помехи (от долей до десятков Герц). Для усиления полезного сигнала (фотоплетизмограммы) было принято решение использовать принцип модуляции - демодуляции, который заключается в следующем:

  1. Переносим полезный сигнал в область высоких частот. Для этого светодиод питается не постоянным током, а переменным, частотой 5 кГц. Таким образом формируется несущий сигнал высокой частоты. При прохождении через палец интенсивность света (пульсирующего с частотой 5 кГц) меняется из-за периодических колебаний кровенаполнения. Следовательно, на фотодетектор попадает ВЧ сигнал, промодулированный по амплитуде полезным сигналом фотоплетизмограммы.
  2. Далее вполне безопасно и относительно просто выполняем фильтрацию низкочастотных помех, обусловленных сторонней засветкой, поскольку спектр полезного сигнала лежит в ВЧ диапазоне (5 кГц).
  3. Усиливаем ВЧ сигнал классическими усилителями на дешевых операционниках.
  4. Выполняем амплитудное детектирование для извлечения полезного низкочастотного сигнала (огибающей).
  5. Фильтруем и усиливаем сигнал низкой частоты.

Проблему №2 (разное кровенаполнение, толщина кожных покровов и прочее) решали реализацией автоматической регулировки коэффициента усиления высокочастотного и низкочастотного усилительных каскадов.

Собственно говоря, это все хитрости, которые, с одной стороны, усложнили схему до безобразия, с другой - сделали возможным создание фотоплетизмографа, который стабильно регистрирует пульсовую волну не только у пациента, который его разрабатывал, а у всех желающих, и который построен на базе недорогих электронных комплектующих, доступных в каждом уважающем себя магазине радиодеталей.

Поясняем схемотехнику

Теперь перейдем к подробностям. Питание фотоплетизмограф получает от ПК по кабелю USB. Гальваническая развязка прибора с ПК не реализована, поскольку при регистрации пульса электрического контакта с пациентом нет. Повышающий импульсный преобразовать питания на базе boost-контроллера NCP1406, выход которого подключен к удвоителю напряжения со средней точкой, подключенной к общему проводу GND, обеспечивает двуполярное питание ± 4В для усилительного тракта, генератора и драйвера светодиода. Питание контроллера обеспечивается отдельно от всей аналоговой части линейным стабилизатором на 3,3В NCP1117ST33T3G, поскольку для работы устройства с ПК по USB (прибор работает как HID-совместимое устройство) на линиях контроллера D+ и D- уровни не должны превышать 3,3В. Можно, конечно, поставить на линиях D+ и D- стабилитроны на 3,3В, сбрасывающие лишнее напряжение, но это приводит к лишнему потреблению, да и сама по себе развязка цепей питания аналоговой и цифровой части - это всегда плюс.

Генератор на базе микросхемы ОУ TL072 (каскад DA1:A) формирует синусоидальный сигнал, драйвер питания светодиода (DA1:B) обеспечивает электрический ток через светодиод, сила которого пропорциональна выходному напряжению генератора. Вместе генератор и драйвер обеспечивают пульсирующее излучение светодиода X1 с частотой 5 кГц и минимальными высшими гармониками. Питание светодиода прямоугольными импульсами приводит к значительному искажению полезного сигнала высшими гармониками после детектирования, поэтому и питаем светодиод синусом.

Фотодиод включен в режиме фотогальванического элемента (без внешнего обратного напряжения), R29 - нагрузочный резистор, который позволяет увеличить быстродействие датчика при таком включении. Конденсаторы C29 и C36 позволяют убрать постоянную составляющую сигнала, которая вызвана сторонними засветками. После первого ВЧ каскада усиления установлен регулируемый микроконтроллером резистивный делитель (на цифровом потенциометре MCP41010, управляемом по интерфейсу SPI).
Поскольку питание MCP41010 однополярное (+4В), ВЧ сигнал смещаем на половину питания (R35-R37). После ослабления сигнала делителем (с заданным контроллером ATMega уровнем ослабления) постоянное смещение убираем конденсатором C31, а ВЧ сигнал подаем на вход ВЧ усилителя с частотно-избирательными цепями в обратной связи (с максимумом усиления на 5 кГц) и далее на амплитудный детектор VD7-R28-C28 для извлечения полезного сигнала ФПГ (демодуляции).

Уровень ослабления сигнала резистивным делителем в ВЧ тракте подбирается исходя из величины постоянной составляющей, измеряемой АЦП контроллера на выходе детектора ADC_AMP.

После амплитудного детектирования полезный сигнал поступает на повторитель на ОУ, который служит для согласования сопротивлений, и усилитель низкой частоты на составном транзисторе VT1-VT2. Схема Дарлингтона позволяет получить минимальный уровень инфранизкочастотных шумов при высоком усилении НЧ сигнала. После усилительного НЧ каскада сигнал подается на цифровой потенциометр MCP41010 и последний каскад усиления DA2:A. Уровень ослабления сигнала потенциометром подбирается исходя из размаха сигнала, измеряемого на входе АЦП контроллера ADC_IN.

Цифровая часть фотоплетизмографа построена на базе микроконтроллера семейства AVR ATMega48. Контроллер осуществляет автоматическую регулировку усиления высокочастотных и низкочастотных каскадов, измеряет сигналы на каналах АЦП (постоянная составляющая ФПГ после демодуляции ADC_AMP и усиленный сигнал пульсограммы ADC_IN).

Итог - схема фотоплетизмографа далека от тривиальной. В ней нет лишних деталей и электрических соединений. Если вы собираетесь использоваться нашу прошивку пульсометра и нашу программу для ПК, ничего не меняйте в схеме. Если вам нужны только идеи, а реализовать собираетесь свой девайс со своей программной частью - набивайте себе шишки экспериментируйте на здоровье!

Программирование микроконтроллера

Программируется контроллер через разъем для внутрисхемного программирования X3 по интерфейсу SPI c помощью программатора STK-500, ucGoZillla , USBtiny или др. Для прошивки контроллера вам также потребуется среда Atmel AVR Studio, которую можно скачать на официальном сайте Microchip .

При программировании микроконтроллера настройки установите согласно скриншотам ниже (внимательно отнеситесь к данному пункту, дабы не превратить контроллер в "кирпич").

Что можно

  • Использовать схему (или ее части) в любых Ваших проектах (в том числе коммерческих).
  • Собирать компьютерный фотоплетизмограф для себя и своих близких, для научных экспериментов и других благих целей.
  • Написать в комментариях на сайте о проблемах или успехах в сборке прибора.
  • Сообщить в комментариях о неясностях, неточностях, о неполноте материалов по сборке фотоплетизмографа.
  • Сообщить в комментариях на сайте о возможных ошибках в материалах по сборке пульсографа.
  • Предлагать в комментариях более разумные технические решения для задач регистрации пульсовой волны.
  • Делиться информацией о сборке прибора на тематических блогах, форумах со ссылкой на первоисточник.
  • Оставлять ссылку на наш сайт в качестве благодарности авторам проекта.

Что нельзя

  • Просить исходные коды прошивки и программы для ПК 🙂 .
  • Требовать от нас написать дополнительные материалы любого содержания на тему компьютерного фотоплетизмографа (техническое задание, бизнес-план, диплом, паспорт на изделие и т.д.).
  • Просить разместить открытые материалы по сборке последней версии компьютерного фотоплетизмографа "Pulse Lite".
  • Менять схему пульсографа по своему усмотрению, а потом ругать разработчиков за неработающий результат.
  • Критиковать схемные решения без весомых аргументов и разумных предложений.

В Интернете вы без большого труда найдете более простые и дешевые схемы датчиков пульса. Наш прибор не для тех, кому просто захотелось "скоротать вечерок за паяльником и поиграть с ЧСС". Здесь мы опубликовали схему нашего восьмого по счету опытного образца фотоплетизмографа, поэтому можем с уверенностью сказать - данный прибор позволит вам зарегистрировать пульсовую волну с минимальным уровнем шума у абсолютного большинства людей. Вам не придется крутить ручки подстроечных резисторов, чтобы увидеть на экране пульс. По форме пульсовой волны вы сможете посчитать индексы жесткости и отражения, а не только мгновенную ЧСС (тем более, что программа всё сделает для вас). Данный прибор - не китайская игрушка, с "недопиленным" ПО и глюкавой прошивкой, и не поделка, сделанная навесным монтажом из "старого распая". Это полноценный компьютерный фотоплетизмограф, который может стать надежным помощником в вопросах объективного контроля вашего здоровья.

Спасибо за внимание к нашим разработкам и всем успехов в сборке вашего домашнего пульсографа!

пульсометр схема фотоплетизмограф схема пульсоксиметр своими руками пульсометр своими руками схема фотоплетизмографа купить фотоплетизмограф купить ведапульс схема элдар датчик пульса самому датчик пульса схема

Sasmsung Galaxy S5 - отличный современный смартфон, но ничто в нём не удивляет больше, чем встроенный датчик сердцебиения, который связан с фирменным приложением S Health. Датчик, который имеет очень маленький размер и располагается на тыльной стороне устройства сразу под камерой дает весьма точные данные об уровне Вашего сердечного ритма. Вы можете его узнать во время утренней пробежки или в любое другое время. Давайте же разберемся в том, как его использовать!

О ЧЁМ СТАТЬЯ?

Действия

1. Откройте обзор приложений

  • Сделайте это, нажав «Приложения» в правом нижнем углу экрана.

2. Запустите приложение «S Health»


  • В пользовательском интерфейсе S Health вы должны увидеть значки в верхней части, которые сообщают вам показания шагомера, подсчитанные калории, а также потребление калорий, которое вы зарегистрировали в приложении. Ниже вы увидите некоторые значки, с которыми вы можете взаимодействовать.

3. На главной странице приложения нажмите на Heart Rate


  • Это зеленый значок с белым сердцем внутри.

4. Прикоснитесь пальцем к датчику сердцебиения под камерой, он загорится красным цветом

Удерживайте его в таком положении несколько секунд пока данные не считаются. Обратите внимание, что первые пару раз смартфон может не считать Ваши показатели. Датчик очень восприимчив к движениям, влажности и другим факторам. Чтобы улучшить качество съема показателя рекомендуем следовать следующим советам:

  • Используйте датчик только сухим пальцем
  • Удерживайте палец на датчике столько, сколько можете. Не торопитесь!
  • Не кричите! Сильный шум может повлиять на работу датчика.
  • Если считывание показателя не происходит, попробуйте задержать дыхание. Иногда это помогает.

Это интересно

Согласно Samsung, установка датчика сердечного ритма является результатом недавней тенденции пристального контроля здоровья, и одной из идей фирмы - «усилия компании Samsung направлены на удовлетворение потребностей и предпочтений людей». После объяснения технических особенностей измерения частоты сердечных сокращений, Samsung говорит о том, почему они добавили в смартфон датчик сердечного ритма вместо какой-либо другой интересной функции. «Частота сердечных сокращений является одним из наиболее часто измеряемых показателей здоровья. Датчик сердечного ритма позволяет проверить в каком режиме работает ваше сердце до, во время и после тренировки». Флагман и носимые устройства всегда под рукой, это и побудило компанию добавить в них такую функцию.



Loading...Loading...