Рациональные системы отопления зданий и сооружений. Повышение эффективности систем отопления

Подстрекаемый решениями последнего съезда ЦК КПСС, советский народ с радостью и воодушевлением воспринял решение Верховного Совета СССР об очередном кидняке люмпенизированного пролетариата и ликвидации пенсионеров и инвалидов как сословия, темпами не ниже 10% в год. (Бурные аплодисменты)

В нашем обществе, товарищи, сложилась порочная практика — доживать до пенсионного возраста, не имея денег. Но это не так страшно, гораздо страшнее, что пенсионеры, инвалиды и ветераны имеют наглость выживать. И причиной этому — льготы. Как выход из сложившейся ситуации, надо повсеместно внедрять монетизацию, которая не позволяла бы увеличиваться пенсионерам в своем количестве. (Аплодисменты, переходящие в овацию).

Примерно такую речь слышит для себя каждый, кто оказался не у дел. И какими бы радужными ни были бы заявления СМИ, все понимают, что чего-то здесь не так. Невозможно такой примитивной одноходовкой, как монетизация, решить такую сложную проблему. Это так же, как в шахматах сделать мат в один ход. А если попробовать проанализировать последствия, то тут будет совсем не до радуг. Наивно было бы полагать, что толпа экономистов, умеющая без последствий для себя умыкнуть миллионы в оффшоры, не смогла придумать ничего лучше, как прямую раздачу денег. И вот тут начинают закрадываться сомнения в том, что какой-то дядя действительно заботится о твоем благе. Для того чтобы понять, что нас ожидает, вовсе не обязательно быть провидцем, достаточно просто иметь память. Вспомнить, каким было отопление вашей квартиры лет двадцать назад и сравнить его с сегодняшним. Вспомнить, какую часть от зарплаты в 100 р. вы отваливали тогда и сколько платите сейчас, зарабатывая свои 100 у.е. Предвидя возражения о дотациях, скажу сразу – брехня. Квартплата в советский период дотировалась только в общагах, воякам, многодетным и ветеранам. Остальные платили по самое не хочу, от 20 до 40 р. за семью из 4 человек в трехкомнатной хрущевке без горячей воды (баксы тогда стоили по 48-65 копеек, тонна угля — 9-12 р.). Но, как бы то ни было, нынче жить стало лучше, нынче жить веселей. Если не верите мне, включите телевизор. Достаточно потрогать батареи отопления, посмотреть на термометр в вашей квартире или просто — снять валенки, чтобы почувствовать всю прелесть прохладного и освежающего дыхания новой жизни. Это вам не смрадное тепло прошлых, застойных времен.

Основная масса населения вообще предпочитает, не мудрствуя лукаво, воткнуть электрообогреватель и не создавать проблем ни себе, ни кочегарам. Но для этого нужен обогреватель и деньги. Мало кто из кочегарской братии отважится поднять температуру в котле выше 70-75С. И их тоже можно понять. Железо оно и есть железо и экстримов не любит. Рисковать тем, чтобы остановить кочегарку среди зимы на ремонт, мало кто отважится, хотя паспортные данные любого водяного котла позволяют разгонять температуру вплоть до 100С. Предел 120С при давлении 0,7 атм.

Поэтому мы имеем то, что имеем. Можно и забастовки делать, но температура воды на подаче в ваш дом выше 70С не будет, а следовательно, и тепла в вашей квартире тоже.

Между тем, есть способ «заставить» батареи обогревать ваше жилище и увеличить их КПД в два, три раза.

Способ простой и не ахти какой трудоемкий. Надо установить вентилятор так, чтобы он дул вдоль батареи. Даже обычного вентилятора от блока питания компьютера хватает, чтобы температура в комнате была выше обычной на 3-5С. Это эквивалентно тому, как если бы вы подключили дополнительно электрообогреватель мощностью 1 квт, или к своей стандартной 6-8 секционной батарее добавили еще десяток секций.

Для этого из жести выгинаем П-образную пластину и края загибаем так, чтобы пластинка прочно удерживалась за ребра батареи. По середине пластины вырезаем отверстие для воздуха и пробиваем 4 маленьких отверстия под крепление вентилятора. Закрепляем вентилятор 4-мя саморезами. Вентилятор от компа расчитан на питание 12 в постоянного тока. Так что подойдет блок питания от старого магнитофона, зарядник для аккумуляторов, но можно слепить и самопальный, с регулировкой напряжения. Тогда можно будет регулировать и обороты вентилятора и шум, который от него исходит. Цепляем это сооружение на батарею, как можно ближе к полу, подключаем и ждем… весну))). Затраты на этот гиперболоид вместе с самопальным блоком питания сопоставимы со стоимостью100 квт/ч электроэнергии. Потребляемая мощность не превышает 4 ватт. Если блок питания будет с регулировкой выходного напряжения, то, регулируя обороты вентилятора, можно регулировать температуру в помещении.

Самое главное то, что, используя такую примочку к вашей батарее, вы уменьшаете зависимость температуры в вашей комнате от настроения кочегара.

Тем, кто решится на этом делать бизнес, я бы посоветовал сделать схему, автоматически отключающую вентилятор в случае, когда температура воздуха в комнате выше температуры батареи. Это на случай, если в кочегарке остановят котел на очистку.

В летнее время этот же самый агрегат можно использовать как эрзац-кондиционер. И еще один плюс: так как скорость гниения (ржавления) магистральных труб напрямую зависит от температуры воды, то таким образом можно, снизив температуру воды до приемлемых пределов, продлить срок службы трубопроводов и котлов.

Про бизнес, про экономию и возможных доходах из этого додумаете сами…

Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» предусматривает значительное снижение энергопотребления системами отопления и вентиляции жилых зданий.

Проектом приказа Министерства регионального развития Российской Федерации планируется ввести нормируемые уровни удельного годового расхода тепловой энергии на отопление и вентиляцию. В качестве базового уровня энергопотребления вводятся показатели, соответствующие проектам зданий, выполненным по нормативам 2008 года до ввода в действие федерального закона.

Так, постановлением Правительства Москвы № 900-ПП удельное потребление энергии на отопление, горячее водоснабжение, освещение и эксплуатацию общедомового инженерного оборудования в многоквартирных жилых домах установлено с 1 октября 2010 года на уровне 160 кВт·ч/м 2 ·год, с 1 января 2016 года запланировано снизить показатель до 130 кВт·ч/м 2 ·год, а с 1 января 2020 года - до 86 кВт·ч/м 2 ·год. На долю отопления и вентиляции в показателях 2010 года приходится примерно 25-30%, или 40-50 кВт·ч/м 2 ·год. На 1 июля 2010 года норматив в Москве составлял 215 кВт·ч/м 2 ·год, из которых на отопление и вентиляцию приходилось 90-95 кВт·ч/м 2 ·год.

Повышение энергоэффективности зданий может быть достигнуто за счет повышения уровня теплозащиты оболочки здания и совершенствования систем отопления и вентиляции.

В базовых показателях распределение расходов тепловой энергии в типовой многоэтажной застройке осуществляется примерно поровну между трансмиссионными теплопотерями (50-55%) и вентиляцией (45-50%).

Примерное распределение годового теплового баланса на отопление и вентиляцию:

  • трансмиссионные теплопотери - 63-65 кВт·ч/м 2 ·год;
  • нагрев вентиляционного воздуха - 58-60 кВт·ч/м 2 ·год;
  • внутренние тепловыделения и инсоляция - 25-30 кВт·ч/м 2 ·год.

Можно ли только за счет повышения уровня теплозащиты ограждений здания добиться достижения нормативов?

С введением требований энергоэффективности правительство Москвы предписывает увеличение сопротивления теплопередаче ограждений здания к уровню 1 октября 2010 года для стен с 3,5 до 4,0 град·м 2 /Вт, для окон с 1,8 до 1,0 град·м 2 /Вт. С учетом этих требований трансмиссионные теплопотери понизятся до 50-55 кВт·ч/м 2 ·год, а общий показатель энергоэффективности - до 80-85 кВт·ч/м 2 ·год.

Эти показатели удельного теплопотребления выше минимальных требований. Следовательно, только теплозащитой проблема энергоэффективности жилых зданий не решается. К тому же отношение специалистов к значительному повышению требований к сопротивлению теплопередаче ограждающих конструкций неоднозначное .

Надо отметить, что в практику массового строительства жилых зданий вошли современные системы отопления с использованием комнатных термостатов, балансировочных клапанов и погодозависимой автоматики тепловых пунктов.

Сложнее обстоят дела с системами вентиляции. До настоящего времени в массовом строительстве используются естественные системы вентиляции. Применение стеновых и оконных саморегулирующих приточных клапанов является средством ограничения сверхнормативного воздухообмена и кардинально не решает проблему энергосбережения.

В мировой практике широко используются системы механической вентиляции с утилизацией теплоты вытяжного воздуха. Энергетическая эффективность утилизаторов теплоты составляет до 65% для пластинчатых теплообменников и до 85% для роторных.

При использовании этих систем в условиях Москвы снижение годового теплопотребления на отопление и вентиляцию к базовому уровню может составить 38-50 кВт·ч/м 2 ·год, что позволяет снизить общий удельный показатель теплопотребления до 50-60 кВт·ч/м 2 ·год без изменения базового уровня теплозащиты ограждений и обеспечить 40%-ное снижение энергоемкости систем отопления и вентиляции, предусмотренное с 2020 года.

Проблема состоит в экономической эффективности механических систем вентиляции с утилизаторами теплоты вытяжного воздуха и необходимости их квалифицированного обслуживания. Импортные квартирные установки достаточно дороги, и их себестоимость в монтаже под ключ обходится в 60-80 тыс. руб. на одну квартиру. При действующих тарифах на электроэнергию и стоимости обслуживания они окупаются за 15-20 лет, что является серьезным препятствием для их применения в массовом строительстве доступного жилья. Приемлемой стоимостью установки для жилья эконом-класса следует признать 20-25 тыс. руб.

Квартирные системы вентиляции с пластинчатым теплоутилизатором

В рамках федеральной целевой программы Минобрнауки РФ ООО «МИКТЕРМ» провело исследования и разработало лабораторный образец энергосберегающей квартирной системы вентиляции (ЭСВ) с пластинчатым теплоутилизатором. Образец разработан как бюджетный вариант установки для жилых зданий эконом-класса.

При создании бюджетной квартирной установки, удовлетворяющей санитарным нормам, были приняты следующие технические решения, позволившие снизить стоимость ЭСВ:

Калькуляция стоимости разработанной ЭСВ приведена в таблице.

В отличие от импортных аналогов, в установке не используются электрические нагреватели ни для защиты от обмерзания, ни для догрева воздуха. Установка на испытаниях показала энергетическую эффективность не менее 65%.

Защита от обмерзания решена следующим образом. При обмерзании теплообменника происходит повышение аэродинамического сопротивления вытяжного тракта, которое регистрируется датчиком давления, дающим команду на кратковременное снижение расхода приточного воздуха до восстановления нормального давления.

На рис. 1 показан график изменения температуры приточного воздуха в зависимости от температуры наружного воздуха при разных расходах приточного воздуха. Расход вытяжного воздуха при этом постоянный и равен 150 м 3 /ч.

Пилотный проект энергоэффективного жилого дома

На базе квартирной установки с теплоутилизатором был разработан пилотный проект энергоэффективного жилого дома в Северном Измайлово в Москве. Проектом предусмотрены технические требования для квартирных установок приточно-вытяжной вентиляции с утилизаторами тепла. Для инновационной установки приведены характеристики ООО «МИКТЕРМ».

Установки предназначены для энергоэффективной сбалансированной вентиляции и создания комфортного климата в жилых помещениях до 120 м 2 . Предусмотрена поквартирная вентиляция с механическим побуждением и утилизацией тепла вытяжного воздуха для нагрева приточного. Приточно-вытяжные агрегаты устанавливаются автономно в коридорах квартир и оснащаются фильтрами, пластинчатым теплообменником и вентиляторами. В состав комплектации установки входят средства автоматизации и пульт управления, позволяющий регулировать воздухопроизводительность установки.

Проходя через вентиляционную установку с пластинчатым утилизатором, вытяжной воздух нагревает приточный до температуры t = +4,0 ˚С (при наружной температуре воздуха t = -28 ˚С). Компенсация дефицита тепла на нагрев приточного воздуха осуществляется нагревательными приборами отопления.

Забор наружного воздуха осуществляется с лоджии данной квартиры, вытяжка, объединенная в пределах одной квартиры из ванн, санузлов и кухонь, после утилизатора выводится в выбросной канал через спутник и выбрасывается в пределах технического этажа. При необходимости отвод конденсата от теплоутилизатора предусматривается в канализационный стояк, оборудованный капельной воронкой HL 21 с запахозапирающим устройством. Стояк расположен в помещении санузлов.

Регулирование расхода приточного и вытяжного воздуха осуществляется посредством одного пульта управления. Агрегат может быть переключен с обычного режима работы с утилизацией тепла на летний режим без утилизации. Переключение осуществляется с помощью заслонки, размещенной в теплоутилизаторе. Вентиляция технического этажа осуществляется через дефлекторы. По результатам испытаний, эффективность применения установки с теплоутилизатором может достигать 67 %.

Расчетный расход тепла на подогрев приточного воздуха на одну квартиру при применении прямоточной вентиляции составляет:
Q
= L ·C ·γ·∆t , Q = 110 × 1,2 × 0,24 × 1,163 × (20 - (-28)) = 1800 Вт.
При применении пластинчатого теплоутилизатора расход тепла на догрев приточного воздуха
Q
= 110 × 1,2 × 0,24 × × 1,163 × (20 - 4) = 590 Вт.
Экономия тепла на одну квартиру при расчетной наружной температуре составляет 1210 Вт. Всего экономия тепла по дому составляет
1210 × 153 = 185130 Вт.

Объем приточного воздуха принят для возмещения вытяжки из помещений санузла, ванны, кухни. Не предусмотрен вытяжной канал для подключения кухонного оборудования (вытяжной зонт от плиты работает на рециркуляцию). Приток разведен через звукопоглощающие воздуховоды по жилым комнатам. Предусмотрена зашивка вентиляционной установки в поквартирных коридорах строительной конструкцией с лючками для обслуживания и вытяжного воздуховода от вентиляционной установки до вытяжной шахты. На складе службы эксплуатации предусмотрены четыре резервных вентилятора. На рис. 2 представлена принципиальная схема вентиляции многоквартирного жилого дома, а на рис. 3 - план типового этажа с размещением вентиляционных установок.

Дополнительные затраты на устройство поквартирной вентиляции с утилизацией теплоты вытяжного воздуха на весь дом оцениваются в 3 млн руб. Годовая экономия теплоты составит 19 800 кВт·ч. С учетом изменения существующих тарифов на тепловую энергию простой срок окупаемости составит около 8 лет.

Литература

  1. Постановление Правительства Москвы № 900-ПП от 5 октября 2010 года «О повышении энергетической эффективности жилых, социальных и общественно-деловых зданий в г. Москве и внесении изменений в постановление Правительства Москвы от 9 июня 2009 года № 536-ПП».
  2. Ливчак В.И. Повышение энергетической эффективности зданий // Энергосбережение.- 2012.- № 6.
  3. Гагарин В.Г. Макроэкономические аспекты обоснования энергосберегающих мероприятий при повышении теплозащиты ограждающих конструкций зданий // Строительные материалы.- 2010.- Март.
  4. Гагарин В.Г., Козлов В.В. О нормировании теплопотерь через оболочку здания // Архитектура и строительство.- 2010.- № 3.
  5. С.Ф. Серов , ООО «МИКТЕРМ», [email protected]
  6. А.Ю. Милованов , ООО «НПО ТЕРМЭК»
  7. ссылка на первоисточник http://www.abok.ru/for_spec/articles.php?nid=5469

Если рассматривать жилой дом как энергопотребляющий объект, то доля теплопотерь в нем в зимний период составляет: через неутепленные или разбитые окна и двери подъездов - 24, через стены - 26, через подвал, перекрытия, лестничные клетки -11, через вентиляционные отверстия и дымоходы -39 % 2 .

Теплопотери происходят не только через стены здания. Они могут иметь место во время аварий на трассах и на тепловых узлах жилых домов.

Большое количество тепловой энергии уходит из-за некачественного строительства: щели у оконных рам, швы между панелями, крыши и т. п., а также в домах со вставленными обогревательными устройствами в стенах (на 30 % больше, чем с обычными отопительными приборами). До 15-20 % тепловой энергии теряется в тепловых сетях, свидетельством чего является зеленая трава, растущая зимой над теплотрассами.

Такое положение с использованием тепла в быту явилось следствием существовавшей в нашей бывшей великой стране концепции о том, что полезных ископаемых, в том числе и топливно-энергетических ресурсов, в нашей стране хватит не только на нынешнее, но и грядущие поколения. И при проектировании жилых домов никогда не считалась стоимость их эксплуатации, поэтому и строили относительно дешевые, но холодные дома.

На коммунально-бытовые нужды в Республике Беларусь расходуется примерно 65 % тепловой энергии. В то же время потери тепла при производстве и передаче тепловой энергии в отопительных котельных республики достигает 30 %. На 1 м 2 отапливаемой площади в нашей стране затрачивается в 2 раза больше условного топлива, чем в Германии и Дании.

Годовой расход тепловой энергии в нашей стране на отопление и вентиляцию 1 м 2 общей площади в 5-этажном доме составляет 150-170 кВт, в Скандинавских странах - 70-90 Вт. На Западе после энергетического кризиса 1972-1973 и 1995 г. передовые европейские страны уменьшили расход тепловой энергии на отопление жилых домов в 2 раза. А это не только экономия денежных средств, но и, главное, - изменение самого мышления граждан и руководителей.

Согласно санитарным нормам 3 горячая вода в квартиры должна подаваться не ниже 50 °С, подается же она при температуре 37... 38 °С. Температура воздуха в квартире должна поддерживаться на уровне 18... 20 °С (комфортная зона), а на кухнях 4 - 16... 18 °С. Семья оплачивает лишь 16-17 % от общих затрат на отопление дома, а от стоимости вырабатываемой тепловой и электрической энергии - лишь 20 %. При такой существующей системе оплаты за потребляемые тепло- и электроэнергию добиться радикального изменения улучшения дела в бытовом секторе будет трудно до тех пор, пока жильцы не будут экономически заинтересованы в экономии тепловой энергии. А для этого предстоит переломить психологию всех граждан по отношению к экономии тепла, воды, газа. Весь европейский опыт показывает, что только продуманная непрерывная система воспитания и образования позволяет получить реальные результаты в энергосбережении в бытовом секторе и производственной сфере. На Западе, в частности в Германии, 78 % всего жилья получает тепло от местных котельных, стоимость единицы которого составляем 0,05 DM/кВт * ч, в то время как при централизованном теплоснабжении это: показатель составляет 0,08. Имеющийся в нашей стране опыт децентрализованного теплоснабжения показывает высокую его эффективность. Местные котельные, построенные в столице (гостиница «Беларусь», несколько жилых домов и т. п.), окупают себя за 1,5-3 года 5 . В 1998 году для обеспечения нужд страны было произведено 77 млн Гкал, в 1999 году - 70 млн Гкал тепловой энергии. Для того чтобы удовлетворить потребность республики в год достаточно 50 млн Гкал.

Придавая важное значение энергосбережению в жилищно-коммунальном секторе экономики, Президент Республики Беларусь А. Г. Лукашенко дал 13 июня 2001 года поручение облисполкомам и Минскому горисполкому совместно с заинтересованными министерствами и ведомствами осуществить 1еры по повышению эффективности жилищного строительства, снижению затрат на развитие инженерно-транспортной и социальной инфраструктур за счет уплотнения застройки, применения локальных источников теплоэнерии, автономных систем отопления, водоснабжения и канализации".

Одним из технических решений сокращения сети теплоснабжения и экономии тепловой энергии является децентрализованная выработка тепла при помощи автоматизированных автономных, в т. ч. и крышных, котельных, (работающих на газовом топливе. Преимущество этого вида теплоснабжения состоит в следующем: возможность построить котельную, удовлетворяющую потребность именно данного здания; экономия земельного участка; экономия энергии за счет отсутствия потерь; возможность контроля теплоты и топлива; установка необходимого режима расхода теплоты в зависимости от продолжительности рабочего дня и температуры наружного воздуха; высокий КПД (90 %) котельных установок; более низкие температуры и давления теплоносителя, что повышает долговечность систем теплоснабжения.

Системы отопления жилых и общественных зданий являются одними из самых значительных потребителей тепловой энергии. Расход тепловой энергии на эти цели составляет более 30 % энергоресурсов, потребляемых народным хозяйством. При этом многоквартирные дома, построенные в 1950-1960 годы расходуют на нужды отопления от 350 до 600 кВт * ч на 1 м 2 . Для сравнения укажем, что этот показатель составляет в Германии 260 кВт * ч, в Швеции и Финляндии - 135 кВт * ч 3 .

Наиболее перспективными направлениями энергосбережения являются внедрение автономных систем тепло- и энергоснабжения, устройство напольного отопления, а также установок, использующих возобновляемые источники энергии и теплоутилизаторов.

Автономные системы теплоснабжения в виде мини-котельных становятся перспективными в тех местах, где в качестве топлива используется природный газ. Они и с экологической точки зрения способствуют улучшению состояния воздушного бассейна, т. к. из-за снижения количества сжигаемого газа уменьшается количество дымовых газов, а газовые выбросы содержат в 2-3 раза меньше вредных веществ в 1 м 3 , чем крупные районные котельные. Но децентрализованное теплоснабжение на базе небольших индивидуальных котельных является эффективным при малой плотности тепловой нагрузки (одно-, двухэтажные застройки в сельских и других населенных пунктах).

Естественно, при существующих развитых тепловых сетях централизованного теплоснабжения необоснованно говорить о повсеместном переходе на автономные котельные. Но внедрение их возможно в следующих случаях:

При строительстве новых и реконструкции старых зданий в районах, где прокладка тепловых сетей технически невозможна;

Для обеспечения теплом объектов, не допускающих перепадов в теплоснабжении (школы, больницы), или потребителей, несущих из-за отсутствия тепла большие экономические потери (гостиницы);

При обеспечении теплом потребителей, распложенных на концевых участках существующих тепловых сетей и испытывающих недостаток тепла из-за низкой пропускной способности тепловых сетей или недостаточной! перепада давления между прямой и обратной магистралями;

При строительстве объектов в небольших городах, где централизованное теплоснабжение развито слабо, а отдельные объекты вводятся разрозненно.

Основным элементом автономной энергоустановки являются комбинированные газовые настенные водонагреватели, в корпусе которых находится бесшумный циркуляционный насос и мембранный расширитель. Горячая вода от водонагревателя по металлическим трубам, укладываемым в бетонной подготовке пола или в плинтусе специальной конструкции, разводится по комнатам.

Опыт эксплуатации 72-квартирного девятиэтажного жилого дома в микрорайоне № 17г. Гомеля с этой принципиально новой для нашей страны системой теплоснабжения, разработанной институтом «Гомельгражданпроект», показал ее надежность и экономичность. Так, за ноябрь 1999 г. проживающая в трехкомнатной квартире семья в составе 4 человек на отопление-горячее водоснабжение и приготовление пищи израсходовала 150 м 3 газ;: Причем треть этого количества израсходована непосредственно на кухне Выполненные расчеты показали, что при традиционной системе теплоснабжения аналогичной квартиры от общедомовой системы с подключением к внешнему источнику для целей отопления и горячего водоснабжения потребовалось бы около 500 м 3 газа.

Высокая эффективность работы предложенной системы поквартирного отопления достигнута благодаря:

Сравнительно высокому КПД газовых водонагревателей (« 85 %);

Исключению потерь тепла за пределами квартир;

Отсутствию перерасхода тепла в межсезонные периоды (по имеющимся данным, он составляет до 20 %);

Возможности поквартирного учета и покомнатного регулирования температуры внутри квартиры.

Кроме того, система поквартирного отопления и горячего водоснабжения существенно уменьшила количество приборов учета. Вместо используемых в настоящее время счетчиков газа, отопления, горячего и холодного водоснабжения достаточно установить только два прибора для учета расхода газа и холодной воды. Кроме того, отпадает необходимость в прокладке наружных тепловых сетей. Пожалуй, одно из самых главных преимуществ этой системы отопления перед традиционной состоит в том, что она дает возможность владельцу квартиры создать комфортную температуру воздуха не посредством открывания форточки и оконной створки, а с помощью регулировочного краника с ручным управлением или автоматической термостатической головкой, экономя тем самым свои деньги на отопление квартиры и государственные энергоресурсы.

Экономия расхода теплоты за счет перечисленных выше преимуществ поквартирного отопления достигает 30 % в год.

Возведение жилых домов с подобной системой инженерного обеспечения весьма оправдано в районах существующей городской застройки, где отсутствуют резервные мощности действующих централизованных источников теплоснабжения.

Опыт работы автономных котельных показывает, что они надежны и экономичны. При теплоснабжении от этих котельных потребитель получает тепловую энергию по тарифам, в 3 раза ниже действующих. За счет этого строительство таких котельных окупается практически за один сезон.

Во всех промышленно и энергетически развитых странах наблюдается очень быстрый рост применения электроотопления, выполняемого, как, правило, путем укладки нагревательных кабелей в пол. Применение электроотопления допускается СНИП 2.04.05-91. Для помещений с постоянным пребыванием людей установлено, что средняя температура подогреваемого пола не должна превышать 26°С, а для дорожек вокруг бассейнов - не большe 30°С. Одной из таких систем электроотопления является кабельная система Теплолюкс. Она устанавливается в толще пола, что превращает всю обогреваемую поверхность в источник тепла, температура которого лишь на несколько градусов превышает температуру воздуха. Эта система, как и другие, подобные ей, используется как основная в отдельно стоящих зданиях, коттеджах и в тех случаях, когда нет возможности выполнить подключение центрального водяного отопления. Она может применяться как дополнительная система отопления (совместно с другими) для получения комнатной температуры.

Совершенно новый способ отопления помещений различного назначения разработан в БИТУ профессором В.П. Лысовом. Созданная им полимерная греющая электропроводка, состоящая из сотен тончайших полимерных волокон, обработанных по оригинальной технологии специальным раствором и соединённых в пучок, обеспечивает при одинаковом расходе электроэнергии гораздо более высокий, чем у металлического проводника, рост температуры, поскольку волокна постоянно греют друг друга. Эту проводку, а точнее, комплект проводов раскладывают по схеме на подготовленные бетонное основание и цементируют. Можно размещать провода и под плиткой, различными линолеумами, ковровыми покрытиями, под дощатым настилом и паркетом. В любом случае будет обеспечена рекомендованная медиками температура пола 25 °С, а воздуха 20... 22 °С. Для надежности можно включить в сеть и автоматический терморегулятор.

Затраты на отопление и эксплуатацию этим способом в 1,5-2 раза ниже по сравнению с другими известными способами, в том числе и аналогичными зарубежными системами греющего пола, где используются металлические проводники. Но недостаток металлических проводников - сопровождающие его нежелательные для организма вихревые токи. Полимерный проводник генерирует электромагнитное поле в 2-10 раз более слабое, которое и близко не подходит к нижнему пределу.

Сфера применения этого способа обогрева очень широка: дома, квартиры, офисы, животноводческие помещения и др. Достоинства его оценены многими владельцами собственных домов, руководителями, но особенно довольны руководители совхозов, где новинка применяется уже 3 года и, кроме экономии энергоресурсов на отопление, во многом способствует сохранению поголовья скота и их привесу. Согласно проведенным учеными БелНИИ животноводства исследованиям мест содержания животных с обогреваемыми полами установлено, что сохранность и привесы поросят повышаются, при этом расход электроэнергии сокращается с 250 Вт при ламповом обогреве до 120-130 Вт при обогреваемых полах на 1 ското-место. Такой способ обогреваемых полов внедрен во многих хозяйствах страны.

Простоту устройства и эксплуатацию греющих полов, невысокую стоимость и расход электроэнергии в сравнении с традиционными технологиями обогрева оценили владельцы более 1,5 тысяч квартир и частных домов, дач и гаражей, офисов и магазинов республики, повысив себе комфортность проживания и труда. К этому следует добавить, что расходы по обустройству обогрева составляют 10-12 долларов США и компенсируются достигаемой экономией за 5-6 месяцев эксплуатации в холодное время года.

Для обеспечения общественных, жилых и производственных помещений дешевым теплом с использованием местных видов топлива экономически выгодно применять воздушное отопление на базе теплогенераторов.

Повышение эффективности тепловых сетей - актуальная и важная задача для российской теплоэнергетики. В энергохозяйстве предприятий и муниципальных образований наиболее малонадёжным и изношенным элементом являются тепловые сети.

Традиционно им уделяется недостаточное внимание, а низкий уровень культуры эксплуатации, воздействие внешних факторов (в том числе таких, как вандализм) и плохое качество первоначального строительства, объясняет их ужасное состояние в настоящий момент. На них часто случаются аварии, это приводит к отказам в теплоснабжении конечных потребителей.

Среди неспециалистов распространено мнение, что эксплуатация тепловых сетей является простым и бесхитростным занятиям. Такой подход приводит к недостатку внимания, уделяемого вопросам эксплуатации. Поэтому, состояние тепловых сетей, как элемента всей инфраструктуры теплоснабжения, находится в весьма удручающем состоянии. Это приводит к большим потерям энергии, когда в теплотрассах теряется до 80% передаваемого тепла. Естественно, приходится повышать температуру теплоносителя, усиленно расходовать топливо, из-за чего несоразмерно вырастают затраты.

Зачастую бывает так, что по мере расширения производств или роста населенного пункта, существующая теплосеть перестаёт удовлетворять необходимым потребностям. Иногда при обследовании сетей выявляются ошибки проектирования и недочёты выполнения строительных работ. В тепловых сетях со сложной структурой возможно проведение мероприятий по её оптимизации, что позволяет сократить затраты.

На практике именно модернизация тепловых сетей приносит наиболее ощутимые результаты. Это обуславливается их очень плохим состоянием. Зачастую, теплосети находятся в столь изношенном виде, что модернизация котельных и тепловых пунктов не даёт должного эффекта. Однако, в таких случаях одним лишь повышением эффективности работы тепловых сетей удаётся существенно поднять качество теплоснабжения и снизить операционные затраты.

Технологии строительства и эксплуатации тепловых магистралей не стоят на месте. Появляются новые виды труб, арматуры, начинают использоваться новые теплоизоляционные материалы. В результате ситуация начинает потихоньку исправляться.

Проектирование, строительство, эксплуатация и модернизация теплотрасс является сложной и зачастую нетривиальной задачей. При осуществлении этой деятельности необходимо учитывать множество факторов, таких как особенности конкретной инфраструктуры и специфику режимов работы теплосети. Всё это предъявляет высокие требования к инженерно-техническому персоналу, осуществляющему данный процесс. Необоснованные и неграмотные решения могут привести к авариям, которые обычно случаются в периоды наибольшей нагрузки на теплосеть - во время зимнего отопительного сезона.

Для поддержания в рабочем состоянии теплопроводов может быть проведено множество мероприятий: от их утепления и устранения влияния негативных внешних воздействий, до промывки тепловой системы от накопившейся грязи. Если мероприятия выполнены грамотно, то их результат сразу же начинает чувствоваться в домах и офисах потребителей виде повышения температуры радиаторов системы отопления.

Проведение ремонтных, модернизационных и эксплуатационных мероприятий на теплосетях является необходимой деятельностью со стороны эксплуатирующих организаций и собственников теплосетей. Если они проводятся вовремя и выполняются качественно, то это позволяет существенно продлить срок службы теплосети, а также значительно сократить количество возникающих аварий.

Специалисты группы компаний «Инвенсис» имеют необходимые компетенции и большой опыт по «оживлению» сетей теплоснабжения. Мы поможем реанимировать ваши теплосети и снизить расходы на отопление и обслуживание инфраструктуры. Наши специалисты готовы провести аудит теплосетей, выработать перечень необходимых ремонтно-восстановительных мероприятий, осуществить их, провести проектные и строительно-монтажные работы, а также работы по пуско-наладке оборудования, осуществить обслуживание.

При выполнении проектов по строительству, модернизации и обслуживанию теплосетей группой компаний «Инвенсис» особое внимание уделяется качеству выполняемых работ, удовлетворению пожеланий заказчиков и получению положительного итогового результата.

Описание:

Повышение энергоэффективности зданий может быть достигнуто за счет повышения уровня теплозащиты оболочки здания и совершенствования систем отопления и вентиляции.

Поквартирная система вентиляции с утилизаторами теплоты

Пилотный проект жилого дома

С. Ф. Серов , ООО «МИКТЕРМ», otvet@сайт

А. Ю. Милованов , ООО «НПО ТЕРМЭК»

Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» предусматривает значительное снижение энергопотребления системами отопления и вентиляции жилых зданий.

Проектом приказа Министерства регионального развития Российской Федерации планируется ввести нормируемые уровни удельного годового расхода тепловой энергии на отопление и вентиляцию. В качестве базового уровня энергопотребления вводятся показатели, соответствующие проектам зданий, выполненным по нормативам 2008 года до ввода в действие федерального закона.

Так, постановлением Правительства Москвы № 900-ПП удельное потребление энергии на отопление, горячее водоснабжение, освещение и эксплуатацию общедомового инженерного оборудования в многоквартирных жилых домах установлено с 1 октября 2010 года на уровне 160 кВт·ч/м 2 ·год, с 1 января 2016 года запланировано снизить показатель до 130 кВт·ч/м 2 ·год, а с 1 января 2020 года – до 86 кВт·ч/м 2 ·год. На долю отопления и вентиляции в показателях 2010 года приходится примерно 25–30%, или 40–50 кВт·ч/м 2 ·год. На 1 июля 2010 года норматив в Москве составлял 215 кВт·ч/м 2 ·год, из которых на отопление и вентиляцию приходилось 90–95 кВт·ч/м 2 ·год.

Повышение энергоэффективности зданий может быть достигнуто за счет повышения уровня теплозащиты оболочки здания и совершенствования систем отопления и вентиляции.

В базовых показателях распределение расходов тепловой энергии в типовой многоэтажной застройке осуществляется примерно поровну между трансмиссионными теплопотерями (50–55%) и вентиляцией (45–50%).

Примерное распределение годового теплового баланса на отопление и вентиляцию:

  • трансмиссионные теплопотери – 63–65 кВт·ч/м 2 ·год;
  • нагрев вентиляционного воздуха – 58–60 кВт·ч/м 2 ·год;
  • внутренние тепловыделения и инсоляция – 25–30 кВт·ч/м 2 ·год.

Можно ли только за счет повышения уровня теплозащиты ограждений здания добиться достижения нормативов?

С введением требований энергоэффективности правительство Москвы предписывает увеличение сопротивления теплопередаче ограждений здания к уровню 1 октября 2010 года для стен с 3,5 до 4,0 град·м 2 /Вт, для окон с 1,8 до 1,0 град·м 2 /Вт. С учетом этих требований трансмиссионные теплопотери понизятся до 50–55 кВт·ч/м 2 ·год, а общий показатель энергоэффективности – до 80–85 кВт·ч/м 2 ·год.

Эти показатели удельного теплопотребления выше минимальных требований. Следовательно, только теплозащитой проблема энергоэффективности жилых зданий не решается. К тому же отношение специалистов к значительному повышению требований к сопротивлению теплопередаче ограждающих конструкций неоднозначное .

Надо отметить, что в практику массового строительства жилых зданий вошли современные системы отопления с использованием комнатных термостатов, балансировочных клапанов и погодозависимой автоматики тепловых пунктов.

Сложнее обстоят дела с системами вентиляции. До настоящего времени в массовом строительстве используются естественные системы вентиляции. Применение стеновых и оконных саморегулирующих приточных клапанов является средством ограничения сверхнормативного воздухообмена и кардинально не решает проблему энергосбережения.

В мировой практике широко используются системы механической вентиляции с утилизацией теплоты вытяжного воздуха. Энергетическая эффективность утилизаторов теплоты составляет до 65% для пластинчатых теплообменников и до 85% для роторных.

При использовании этих систем в условиях Москвы снижение годового теплопотребления на отопление и вентиляцию к базовому уровню может составить 38–50 кВт·ч/м 2 ·год, что позволяет снизить общий удельный показатель теплопотребления до 50–60 кВт·ч/м 2 ·год без изменения базового уровня теплозащиты ограждений и обеспечить 40%-ное снижение энергоемкости систем отопления и вентиляции, предусмотренное с 2020 года.

Проблема состоит в экономической эффективности механических систем вентиляции с утилизаторами теплоты вытяжного воздуха и необходимости их квалифицированного обслуживания. Импортные квартирные установки достаточно дороги, и их себестоимость в монтаже под ключ обходится в 60–80 тыс. руб. на одну квартиру. При действующих тарифах на электроэнергию и стоимости обслуживания они окупаются за 15–20 лет, что является серьезным препятствием для их применения в массовом строительстве доступного жилья. Приемлемой стоимостью установки для жилья эконом-класса следует признать 20–25 тыс. руб.

Квартирные системы вентиляции с пластинчатым теплоутилизатором

В рамках федеральной целевой программы Минобрнауки РФ ООО «МИКТЕРМ» провело исследования и разработало лабораторный образец энергосберегающей квартирной системы вентиляции (ЭСВ) с пластинчатым теплоутилизатором. Образец разработан как бюджетный вариант установки для жилых зданий эконом-класса.

При создании бюджетной квартирной установки, удовлетворяющей санитарным нормам, были приняты следующие технические решения, позволившие снизить стоимость ЭСВ:

  • теплообменник изготовлен из пластин сотового поликарбоната;
  • исключен электроподогреватель N = 500 Вт;
  • за счет низкого аэродинамического сопротивления теплообменника расход энергии составляет 46 Вт;
  • использована простая автоматика, обеспечивающая надежную работу установки.

Калькуляция стоимости разработанной ЭСВ приведена в таблице.

В отличие от импортных аналогов, в установке не используются электрические нагреватели ни для защиты от обмерзания, ни для догрева воздуха. Установка на испытаниях показала энергетическую эффективность не менее 65%.

Защита от обмерзания решена следующим образом. При обмерзании теплообменника происходит повышение аэродинамического сопротивления вытяжного тракта, которое регистрируется датчиком давления, дающим команду на кратковременное снижение расхода приточного воздуха до восстановления нормального давления.

На рис. 1 показан график изменения температуры приточного воздуха в зависимости от температуры наружного воздуха при разных расходах приточного воздуха. Расход вытяжного воздуха при этом постоянный и равен 150 м 3 /ч.

Пилотный проект энергоэффективного жилого дома

На базе квартирной установки с теплоутилизатором был разработан пилотный проект энергоэффективного жилого дома в Северном Измайлово в Москве. Проектом предусмотрены технические требования для квартирных установок приточно-вытяжной вентиляции с утилизаторами тепла. Для инновационной установки приведены характеристики ООО «МИКТЕРМ».

Установки предназначены для энергоэффективной сбалансированной вентиляции и создания комфортного климата в жилых помещениях до 120 м 2 . Предусмотрена поквартирная вентиляция с механическим побуждением и утилизацией тепла вытяжного воздуха для нагрева приточного. Приточно-вытяжные агрегаты устанавливаются автономно в коридорах квартир и оснащаются фильтрами, пластинчатым теплообменником и вентиляторами. В состав комплектации установки входят средства автоматизации и пульт управления, позволяющий регулировать воздухопроизводительность установки.

Проходя через вентиляционную установку с пластинчатым утилизатором, вытяжной воздух нагревает приточный до температуры t = +4,0 ˚С (при наружной температуре воздуха t = –28 ˚С). Компенсация дефицита тепла на нагрев приточного воздуха осуществляется нагревательными приборами отопления.

Забор наружного воздуха осуществляется с лоджии данной квартиры, вытяжка, объединенная в пределах одной квартиры из ванн, санузлов и кухонь, после утилизатора выводится в выбросной канал через спутник и выбрасывается в пределах технического этажа. При необходимости отвод конденсата от теплоутилизатора предусматривается в канализационный стояк, оборудованный капельной воронкой HL 21 с запахозапирающим устройством. Стояк расположен в помещении санузлов.

Регулирование расхода приточного и вытяжного воздуха осуществляется посредством одного пульта управления. Агрегат может быть переключен с обычного режима работы с утилизацией тепла на летний режим без утилизации. Переключение осуществляется с помощью заслонки, размещенной в теплоутилизаторе. Вентиляция технического этажа осуществляется через дефлекторы. По результатам испытаний, эффективность применения установки с теплоутилизатором может достигать 67 %.

Расчетный расход тепла на подогрев приточного воздуха на одну квартиру при применении прямоточной вентиляции составляет:
Q
= L ·C ·γ·∆t , Q = 110 × 1,2 × 0,24 × 1,163 × (20 – (–28)) = 1800 Вт.
При применении пластинчатого теплоутилизатора расход тепла на догрев приточного воздуха
Q
= 110 × 1,2 × 0,24 × × 1,163 × (20 – 4) = 590 Вт.
Экономия тепла на одну квартиру при расчетной наружной температуре составляет 1210 Вт. Всего экономия тепла по дому составляет
1210 × 153 = 185130 Вт.

Объем приточного воздуха принят для возмещения вытяжки из помещений санузла, ванны, кухни. Не предусмотрен вытяжной канал для подключения кухонного оборудования (вытяжной зонт от плиты работает на рециркуляцию). Приток разведен через звукопоглощающие воздуховоды по жилым комнатам. Предусмотрена зашивка вентиляционной установки в поквартирных коридорах строительной конструкцией с лючками для обслуживания и вытяжного воздуховода от вентиляционной установки до вытяжной шахты. На складе службы эксплуатации предусмотрены четыре резервных вентилятора. На рис. 2 представлена принципиальная схема вентиляции многоквартирного жилого дома, а на рис. 3 – план типового этажа с размещением вентиляционных установок.

Дополнительные затраты на устройство поквартирной вентиляции с утилизацией теплоты вытяжного воздуха на весь дом оцениваются в 3 млн руб. Годовая экономия теплоты составит 19 800 кВт·ч. С учетом изменения существующих тарифов на тепловую энергию простой срок окупаемости составит около 8 лет.

Литература

  1. Постановление Правительства Москвы № 900-ПП от 5 октября 2010 года «О повышении энергетической эффективности жилых, социальных и общественно-деловых зданий в г. Москве и внесении изменений в постановление Правительства Москвы от 9 июня 2009 года № 536-ПП».
  2. Ливчак В.И. Повышение энергетической эффективности зданий // Энергосбережение.– 2012.– № 6.
  3. Гагарин В.Г. Макроэкономические аспекты обоснования энергосберегающих мероприятий при повышении теплозащиты ограждающих конструкций зданий // Строительные материалы.– 2010.– Март.
  4. Гагарин В.Г., Козлов В.В. О нормировании теплопотерь через оболочку здания // Архитектура и строительство.– 2010.– № 3.


Loading...Loading...